首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geraniol is an important industrial material and a potential candidate of advanced biofuels. One challenge of microbial geraniol production is the toxicity to hosts. However, the poor understanding on geraniol tolerance mechanism is an obstacle for developing geraniol tolerant host. This study genome-widely screened a shot-gun DNA library of Escherichia coli and found that recA is able to confer geraniol tolerance in E. coli. The recA knockout mutant was found extremely sensitive to geraniol. Based on our data, it was deciphered that recA provided tolerance through SOS response network responding to DNA damage caused by geraniol. RecA-mediated SOS response activates the homologous recombinational repair by RecB and RecN for corrective DNA maintenance. This protection mechanism suggests an effective strategy to combat geraniol toxicity in E. coli.  相似文献   

2.
In order to clarify the physiological role of the merE gene of transposon Tn21, a pE4 plasmid that contained the merR gene of plasmid pMR26 from Pseudomonas strain K-62, and the merE gene of Tn21 from the Shigella flexneri plasmid NR1 (R100) was constructed. Bacteria with plasmid pE4 (merR-o/p-merE) were more hypersensitive to CH3Hg(I) and Hg(II), and took up significantly more CH3Hg(I) and Hg(II), than the isogenic strain. The MerE protein encoded by pE4 was localized in the membrane cell fraction, but not in the soluble fraction. Based on these experimental results, we suggest for the first time that the merE gene is a broad mercury transporter mediating the transport of both CH3Hg(I) and Hg(II) across the bacterial membrane.  相似文献   

3.
Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.  相似文献   

4.
5.
The bacterium Escherichia coli is one of the most popular model systems to study the assembly of membrane proteins of the so-called helix-bundle class. Here, based on this system, we review and discuss what is currently known about the assembly of these membrane proteins. In addition, we will briefly review and discuss how E. coli has been used as a vehicle for the overexpression of membrane proteins.  相似文献   

6.
Porphyromonas gingivalis peptidylarginine deiminase (PAD) catalyzes the deimination of peptidylarginine residues of various peptides to produce peptidylcitrulline and ammonia. P. gingivalis is associated with adult-onset periodontitis and cardiovascular disease, and its proliferation depends on secretion of PAD. We have expressed two recombinant forms of the P. gingivalis PAD in Escherichia coli, a truncated form with a 43-amino acid N-terminal deletion and the full-length form of PAD as predicted from the DNA sequence. Both forms contain a poly-His tag and Xpress epitope at the N-terminus to aid in detection and purification. The activities and stabilities of these two forms have been evaluated. PAD is cold sensitive; it aggregates within 30 min at 4 °C, and optimal storage conditions are at 25 °C in the presence of a reducing agent. PAD is not a metalloenzyme and does not need a cofactor for catalysis or stability. Multiple l-arginine analogs, various arginine-containing peptides, and free l-arginine were used to evaluate substrate specificity and determine kinetic parameters.  相似文献   

7.
Lipopolysaccharide (LPS) is the main component of Gram-negative bacteria that - upon infection - activates the host immune system and is crucial in fighting pathogens as well as in the induction of sepsis. In the present study we addressed the question whether the key structural components of LPS equally take part in the activation of different macrophage immune responses. By genomic modifications of Escherichia coli MG1655, we constructed a series of strains harboring complete and truncated forms of LPS in their cell wall. These strains were exposed to RAW 264.7 macrophages, after which phagocytosis, fast release of pre-synthesized TNF and activation of NF-κB signal transduction pathway were quantified. According to our results the core and lipid A moieties are involved in immune recognition. The most ancient part, lipid A is crucial in evoking immediate TNF release and activation of NF-κB. The O-antigen inhibits phagocytosis, leading to immune evasion.  相似文献   

8.
In eubacteria, ribosome recycling factor (RRF) and elongation factor G (EFG) function together to dissociate posttermination ribosomal complexes. Earlier studies, using heterologous factors from Mycobacterium tuberculosis in Escherichia coli revealed that specific interactions between RRF and EFG are crucial for their function in ribosome recycling. Here, we used translation factors from E. coli, Mycobacterium smegmatis and M. tuberculosis, and polysomes from E. coli and M. smegmatis, and employed in vivo and in vitro experiments to further understand the role of EFG in ribosome recycling. We show that E. coli EFG (EcoEFG) recycles E. coli ribosomes with E. coli RRF (EcoRRF), but not with mycobacterial RRFs. Also, EcoEFG fails to recycle M. smegmatis ribosomes with either EcoRRF or mycobacterial RRFs. On the other hand, mycobacterial EFGs recycle both E. coli and M. smegmatis ribosomes with either of the RRFs. These observations suggest that EFG establishes distinct interactions with RRF and the ribosome to carry out ribosome recycling. Furthermore, the EFG chimeras generated by swapping domains between mycobacterial EFGs and EcoEFG suggest that while the residues needed to specify the EFG interaction with RRF are located in domains IV and V, those required to specify its interaction with the ribosome are located throughout the molecule.  相似文献   

9.
Metabolomics is a potent tool to assist in identifying the function of unknown genes through analysis of metabolite changes in the context of varied genetic backgrounds. However, the availability of a universal unbiased profiling analysis is still a big challenge. In this study, we report an optimized metabolic profiling method based on gas chromatography–mass spectrometry for Escherichia coli. It was found that physiological saline at −80 °C could ensure satisfied metabolic quenching with less metabolite leakage. A solution of methanol/water (21:79, v/v) was proved to be efficient for intracellular metabolite extraction. This method was applied to investigate the metabolome difference among wild-type E. coli, its yfcC deletion, and overexpression mutants. Statistical and bioinformatic analysis of the metabolic profiling data indicated that the expression of yfcC potentially affected the metabolism of glyoxylate shunt. This finding was further validated by real-time quantitative polymerase chain reactions showing that expression of aceA and aceB, the key genes in glyoxylate shunt, was upregulated by yfcC. This study exemplifies the robustness of the proposed metabolic profiling analysis strategy and its potential roles in investigating unknown gene functions in view of metabolome difference.  相似文献   

10.
The small heat shock protein IbpB of Escherichia coli can accelerate protein disaggregation from inclusion body by Hsp100-Hsp70 re-activation system in vitro. It was therefore hypothesized that overexpression of IbpB might be able to promote protein disaggregation from inclusion body, by which more soluble recombinant proteins would be obtained. The overexpression of IbpB actually enhanced production of more active soluble XynB of Streptomyces olivaceovirdis in E. coli BL21(DE3). Surprisingly, the disaggregation of XynB from inclusion body was not accelerated. It seemed that the overexpressed IbpB protected improperly or partially folded XynB from aggregation and mediated the subsequent refolding. These results show potential of improving production of active heterologous proteins in E. coli.  相似文献   

11.
Fast and simple detection of pathogens is of utmost importance in health care and the food industry. In this article, a novel technology for the detection of pathogenic bacteria is presented. The technology uses lytic-specific bacteriophages and a nonspecific interaction of cellular components with a luminescent lanthanide chelate. As a proof of principle, Escherichia coli-specific T4 bacteriophage was used to infect the bacteria, and the cell lysis was detected. In the absence of E. coli, luminescent Eu3+–chelate complex cannot be formed and low time-resolved luminescence signal is monitored. In the presence of E. coli, increased luminescence signal is observed as the cellular contents are leached to the surrounding medium. The luminescence signal is observed as a function of the number of bacteria in the sample. The homogeneous assay can detect living E. coli in bacterial cultures and simulated urine samples within 25 min with a detection limit of 1000 or 10,000 bacterial cells/ml in buffer or urine, respectively. The detection limit is at the clinically relevant level, which indicates that the method could also be applicable to clinical settings for fast detection of urine bacteria.  相似文献   

12.
Dehydration of microorganisms, rendering them anhydrobiotic, is often an efficient method for the short and long term conservation of different strain-producers. However, some biotechnologically important recombinant bacterial strains are extremely sensitive to conventional treatment. We describe appropriate conditions during dehydration of the recombinant Escherichia coli strain HB 101 (GAPDH) that can result dry cells having a ∼88% viability on rehydration. The methods entails air-drying after addition of 100 mM trehalose to the cultivation medium or distilled water (for short term incubation).  相似文献   

13.
The structure of the O-antigen polysaccharides (PS) from the enteroaggregative Escherichia coli strain 94/D4 and the international type strain E. coli O82 have been determined. Component analysis and 1H, 13C, and 31P NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by 1H, 13C-heteronuclear multiple-bond correlation, and 1H, 1H-NOESY experiments. d-GroA as a substituent is linked via its O-2 in a phosphodiester-linkage to O-6 of the α-d-Glcp residue. The PS is composed of tetrasaccharide repeating units with the following structure:→4)-α-d-Glcp6-(P-2-d-GroA)-(1→4)-β-d-Galp-(1→4)-β-d-Glcp-(1→3)-β-d-GlcpNAc-(1→Cross-peaks of low intensity from an α-d-Glcp residue were present in the NMR spectra and spectral analysis indicates that they originate from the terminal residue of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-glucosamine residue at its reducing end. Enzyme immunoassay using specific anti-E. coli O82 rabbit sera showed identical reactivity to the LPS of the two strains, in agreement with the structural analysis of their O-antigen polysaccharides.  相似文献   

14.
PHB(polyP) complexes bind calcium and form calcium channels in the cytoplasmic membrane in Escherichia coli and are likely to be important in Ca2+ homeostasis in this organism. E. coli N43, which lacks the AcrA component of a major multidrug resistance pump, was shown to be defective in calcium handling, with an inability to maintain submicromolar levels of free Ca2+ in the cytoplasm. Therefore, using an N-phenyl-1-napthylamine (NPN)-dependent fluorescence assay, we measured temperature-dependent phase transitions in the membranes of intact cells. These transitions specifically depend on the presence of PHB(Ca2+polyP) complexes. PHB(Ca2+polyP) channel complexes, particularly in stationary phase cultures, were detected in wild-type strains; however, in contrast, isogenic acrA strains had greatly reduced amounts of the complexes. This indicates that the AcrAB transporter may have a novel, hitherto undetected physiological role, either directly in the membrane assembly of the PHB complexes or the transport of a component of the membrane, which is essential for assembly of the complexes into the membrane. In other experiments, we showed that the particular defective calcium handling detected in N43 was not due to the absence of AcrA but to other unknown factors in this strain.  相似文献   

15.
The Escherichia coli chromosome contains two opposed sets of unidirectional DNA replication pause (Ter) sites that, according to the replication fork trap theory, control the termination of chromosome replication by restricting replication fork fusion to the terminus region. In contrast, a recent hypothesis suggested that termination occurs at the dif locus instead. Using two-dimensional agarose gel electrophoresis, we examined DNA replication intermediates at the Ter sites and at dif in wild-type cells. Two definitive signatures of site-specific termination—specific replication fork arrest and converging replication forks—were clearly detected at Ter sites, but not at dif. We also detected a significant pause during the latter stages of replication fork convergence at Ter sites. Quantification of fork pausing at the Ter sites in both their native chromosomal context and the plasmid context further supported the fork trap model.  相似文献   

16.
The following structure of the O-polysaccharide (O-antigen) of Salmonella enterica O13 was established by chemical analyses along with 2D 1H and 13C NMR spectroscopy:→2)-α-l-Fucp-(1→2)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→3)-α-d-GlcpNAc-(1→The O-antigen of S. enterica O13 was found to be closely related to that of Escherichia coli O127, which differs only in the presence of a GalNAc residue in place of the GlcNAc residue and O-acetylation. The location of the O-acetyl groups in the E. coli O127 polysaccharide was determined. The structures of the O-polysaccharides studied are in agreement with the DNA sequence of the O-antigen gene clusters of S. enterica O13 and E. coli O127 reported earlier.  相似文献   

17.
Chromosomal DNA is exposed to continuous damage and repair. Cells contain a number of proteins and specific DNA repair systems that help maintain its correct structure. The SOS response was the first DNA repair system described in Escherichia coli induced upon treatment of bacteria with DNA damaging agents arrest DNA replication and cell division. Induction of the SOS response involves more than forty independent SOS genes, most of which encode proteins engaged in protection, repair, replication, mutagenesis and metabolism of DNA. Under normal growth conditions the SOS genes are expressed at a basal level, which increases distinctly upon induction of the SOS response. The SOS-response has been found in many bacterial species (e.g., Salmonella typhimurium, Caulobacter crescentus, Mycobacterium tuberculosis), but not in eukaryotic cells. However, species from all kingdoms contain some SOS-like proteins taking part in DNA repair that exhibit amino acid homology and enzymatic activities related to those found in E. coli. but are not organized in an SOS system. This paper presents a brief up-to-date review describing the discovery of the SOS system, the physiology of SOS induction, methods for its determination, and the role of some SOS-induced genes.  相似文献   

18.
Multiheme cytochromes c have been found in a number of sulfate- and metal ion-reducing bacteria. Geobacter sulfurreducens is one of a family of microorganisms that oxidize organic compounds, with Fe(III) oxide as the terminal electron acceptor. A triheme 9.6 kDa cytochrome c7 from G. sulfurreducens is a part of the metal ion reduction pathway. We cloned the gene for cytochrome c7 and expressed it in Escherichiacoli together with the cytochrome c maturation gene cluster, ccmABCDEFGH, on a separate plasmid. We designed two constructs, with and without an N-terminal His-tag. The untagged version provided a good yield (up to 6 mg/l of aerobic culture) of the fully matured protein, with all three hemes attached, while the N-terminal His-tag appeared to be detrimental for proper heme incorporation. The recombinant protein (untagged) is properly folded, it has the same molecular weight and displays the same absorption spectra, both in reduced and in oxidized forms, as the protein isolated from G. sulfurreducens and it is capable of reducing metal ions in vitro. The shape parameters for the recombinant cytochrome c7 determined by small angle X-ray scattering are in good agreement with the ones calculated from a homologous cytochrome c7 of known structure.  相似文献   

19.
Efficient use of xylose is necessary for economic production of biochemicals and biofuels from lignocellulosic materials. Current studies on xylose uptake for various microorganisms have been hampered by the lack of a facile assay for xylose transport. In this work, a rapid in vivo, label-free method for measuring xylose transport in Escherichia coli was developed by taking advantage of the Bacillus pumilus xylosidase (XynB), which cleaved a commercially available xylose analog, p-nitrophenyl-β-d-xylopyranoside (pNPX), to release a chromogenic group, p-nitrophenol (pNP). XynB was expressed alone or in conjunction with a Zymomonas mobilis glucose facilitator protein (Glf) capable of transporting xylose. This XynB-mediated transport assay was demonstrated in test tubes and 96-well plates with submicromolar concentrations of pNPX. Kinetic inhibition experiments validated that pNPX and xylose were competitive substrates for the transport process, and the addition of glucose (20 g/L) in the culture medium clearly diminished the transmembrane transport of pNPX and, thus, mimicked its inhibitory action on xylose uptake. This method should be useful for engineering of the xylose transport process in E. coli, and similar assay schemes can be extended to other microorganisms.  相似文献   

20.
Escherichia coli can uptake and utilize many common natural sugars to form biomass or valuable target bio-products. Carbon catabolite repression (CCR) will occur and hamper the efficient production of bio-products if E. coli strains are cultivated in a mixture of sugars containing some preferred sugar, such as glucose. Understanding the transport and metabolism mechanisms of the common and inexpensive sugars in E. coli is important for further improving the efficiency of sugar bioconversion and for reducing industrial fermentation costs using the methods of metabolic engineering, synthetic biology and systems biology. In this review, the transport and mediation mechanisms of glucose, fructose, sucrose, xylose and arabinose are discussed and summarized, and the hierarchical utilization principles of these sugars are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号