首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAP kinases (MAPKs) are enzymes directly involved in the control of cellular homeostasis in response to external cues, from differentiation and developmental processes to cell transformation. The activation status of MAPKs, both in magnitude and in duration, reflects the balance of phosphorylation at their Thr and Tyr regulatory residues by specific MAPK kinases and their dephosphorylation by inactivating protein serine/threonine phosphatases (PPs) and protein tyrosine phosphatases (PTPs). The dephosphorylation of MAPKs by PTPs relies on molecular docking between the two enzymes at specific interaction sites. Here we outline a one-step method to identify ERK1/2 and p38α mutations that prevent binding and inactivation by PTPs (tyrosine- or dual-specificity phosphatases) based on the use of anti-pTyr antibodies and cell lysis buffers lacking or containing the broad PTP inhibitor sodium orthovanadate (Na3VO4).  相似文献   

2.
Reactive oxygen species (ROS), in particular, H2O2, is essential for full activation of VEGF receptor2 (VEGFR2) signaling involved in endothelial cell (EC) proliferation and migration. Extracellular superoxide dismutase (ecSOD) is a major secreted extracellular enzyme that catalyzes the dismutation of superoxide to H2O2, and anchors to EC surface through heparin-binding domain (HBD). Mice lacking ecSOD show impaired postnatal angiogenesis. However, it is unknown whether ecSOD-derived H2O2 regulates VEGF signaling. Here we show that gene transfer of ecSOD, but not ecSOD lacking HBD (ecSOD-ΔHBD), increases H2O2 levels in adductor muscle of mice, and promotes angiogenesis after hindlimb ischemia. Mice lacking ecSOD show reduction of H2O2 in non-ischemic and ischemic limbs. In vitro, overexpression of ecSOD, but not ecSOD-ΔHBD, in cultured medium in ECs enhances VEGF-induced tyrosine phosphorylation of VEGFR2 (VEGFR2-pY), which is prevented by short-term pretreatment with catalase that scavenges extracellular H2O2. Either exogenous H2O2 (<500 µM), which is diffusible, or nitric oxide donor has no effect on VEGF-induced VEGFR2-pY. These suggest that ecSOD binding to ECs via HBD is required for localized generation of extracellular H2O2 to regulate VEGFR2-pY. Mechanistically, VEGF-induced VEGFR2-pY in caveolae/lipid rafts, but non-lipid rafts, is enhanced by ecSOD, which localizes at lipid rafts via HBD. One of the targets of ROS is protein tyrosine phosphatases (PTPs). ecSOD induces oxidation and inactivation of both PTP1B and DEP1, which negatively regulates VEGFR2-pY, in caveolae/lipid rafts, but not non-lipid rafts. Disruption of caveolae/lipid rafts, or PTPs inhibitor orthovanadate, or siRNAs for PTP1B and DEP1 enhances VEGF-induced VEGFR2-pY, which prevents ecSOD-induced effect. Functionally, ecSOD promotes VEGF-stimulated EC migration and proliferation. In summary, extracellular H2O2 generated by ecSOD localized at caveolae/lipid rafts via HBD promotes VEGFR2 signaling via oxidative inactivation of PTPs in these microdomains. Thus, ecSOD is a potential therapeutic target for angiogenesis-dependent cardiovascular diseases.  相似文献   

3.
In our study, we showed that at a relatively low concentration, H2O2 can irreversibly inactivate the human brain type of creatine kinase (HBCK) and that HBCK is inactivated in an H2O2 concentration-dependent manner. HBCK is completely inactivated when incubated with 2 mM H2O2 for 1 h (pH 8.0, 25 °C). Inactivation of HBCK is a two-stage process with a fast stage (k1 = 0.050 ± 0.002 min−1) and a slow (k2 = 0.022 ± 0.003 min−1) stage. HBCK inactivation by H2O2 was affected by pH and therefore we determined the pH profile of HBCK inactivation by H2O2. H2O2-induced inactivation could not be recovered by reducing agents such as dl-dithiothreitol, N-acetyl-l-cysteine, and l-glutathione reduced. When HBCK was treated with DTNB, an enzyme substrate that reacts specifically with active site cysteines, the enzyme became resistant to H2O2. HBCK binding to Mg2+ATP and creatine can also prevent H2O2 inactivation. Intrinsic and 1-anilinonaphthalene-8-sulfonate-binding fluorescence data showed no tertiary structure changes after H2O2 treatment. The thiol group content of H2O2-treated HBCK was reduced by 13% (approximately 1 thiol group per HBCK dimer, theoretically). For further insight, we performed a simulation of HBCK and H2O2 docking that suggested the CYS283 residue could interact with H2O2. Considering these results and the asymmetrical structure of HBCK, we propose that H2O2 specifically targets the active site cysteine of HBCK to inactivate HBCK, but that substrate-bound HBCK is resistant to H2O2. Our findings suggest the existence of a previously unknown negative form of regulation of HBCK via reactive oxygen species.  相似文献   

4.
Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO2 photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (·OH), which is generated on the surface of UV-illuminated TiO2, plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H2O2 and O2·, etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe2+, were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O2· and H2O2, according to the present results.  相似文献   

5.
Ascorbate peroxidase (APX) isoforms localized in the stroma and thylakoid of the chloroplast play a principle role in detoxifying hydrogen peroxide (H2O2) generated in photosystem I; however, once the ascorbate is depleted, the enzyme is attacked by H2O2 and rapidly loses its activity. Here, we report that radical transfer across the porphyrin moiety and amino acid residues in the reaction intermediate and H2O2-mediated enzyme inactivation involve cooperative interactions of the Cys26, Trp35, and Cys126 residues of stromal APX. The wild-type enzyme had a half-time of inactivation of <10 s, while the triple mutant of the three residues retained 50% of the initial activity after H2O2 treatment for 3 min. The H2O2 tolerance of this mutant was comparable to that of the H2O2-tolerant APX isoform localized in the cytosol.  相似文献   

6.
The reactions of a dioxotetraamine Cu(II) complex [Cu(H−2L)] (L is 6-(9-fluorenyl)-1,4,8,11-tetraazaandencane-5,7-dione)with O2 − were investigated by electrochemistry, UV-Vis spectrophotometry and pulse radiolysis, respectively. In DMSO solution, [CuII(H−2L)] was oxidized into [CuIII(H−2L)]+ by O2 −, a consecutive reaction was observed with [CuIII(H−2L)(O2 2−)] − as intermediates (k1=1.71×103 M−1 s−1, k2=1.2×10−2 s−1). The mechanism of O2 − dismutation catalyzed by the complex involved alternate oxidation and reduction of Cu(II) by O2 − and the kcat is 6.07 × 107 M−1 s−1 (pH 7.4).  相似文献   

7.
Ma L  Lu L  Zhu M  Wang Q  Gao F  Yuan C  Wu Y  Xing S  Fu X  Mei Y  Gao X 《Journal of inorganic biochemistry》2011,105(9):1138-1147
Three dinuclear copper complexes of organic claw ligands (2,2′,2″,2?-(5-R-2-hydroxy-1,3-phenylene)bis(methylene)bis(azanetriyl)tetraacetic acid, R = methyl (H5L1), chloro (H5L2) and bromo (H5L3)): [Cu2NaL1(H2O)2] (1), [Cu2HL2(H2O)2] (2), [Cu2NaL3(H2O)2] (3), have been synthesized and characterized by elemental analyses, infrared spectra, thermo-gravimetric analyses, X-ray diffraction analysis, electrospray ionization mass spectra, pH-potentiometric titration, molar conductivity. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T cell protein tyrosine phosphatase (TCPTP), Megakaryocyte protein tyrosinephosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) are evaluated in vitro. The three copper complexes exhibit potent and almost same inhibition against PTP1B and SHP-1 with IC50 values ranging from 0.15 to 0.31 μM, about 2-fold stronger inhibition than against PTP-MEG2, 10-fold stronger inhibition than against TCPTP, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Molecular docking analyses confirm the inhibition model. Fluorescence titration studies suggest that the complexes bond to PTP1B with the formation of a 1:1 complex. The results demonstrate that copper complexes that are potent PTPs inhibitors but have different inhibitory effects over different PTPs, may be explored as new practical inhibitors towards individual PTP with some specificity.  相似文献   

8.
Human myeloperoxidase (MPO) uses hydrogen peroxide generated by the oxidative burst of neutrophils to produce an array of antimicrobial oxidants. During this process MPO is irreversibly inactivated. This study focused on the unknown role of hydrogen peroxide in this process. When treated with low concentrations of H2O2 in the absence of reducing substrates, there was a rapid loss of up to 35% of its peroxidase activity. Inactivation is proposed to occur via oxidation reactions of Compound I with the prosthetic group or amino acid residues. At higher concentrations hydrogen peroxide acts as a suicide substrate with a rate constant of inactivation of 3.9 × 10−3 s−1. Treatment of MPO with high H2O2 concentrations resulted in complete inactivation, Compound III formation, destruction of the heme groups, release of their iron, and detachment of the small polypeptide chain of MPO. Ten of the protein’s methionine residues were oxidized and the thermal stability of the protein decreased. Inactivation by high concentrations of H2O2 is proposed to occur via the generation of reactive oxidants when H2O2 reacts with Compound III. These mechanisms of inactivation may occur inside neutrophil phagosomes when reducing substrates for MPO become limiting and could be exploited when designing pharmacological inhibitors.  相似文献   

9.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H2O2 with concurrent evolution of O2. This pseudocatalatic degradation of H2O2 to O2 is solely dependent on ascorbate and is blocked by a spin trap, α-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H2O with subsequent regeneration of ascorbate by the reduction of MDA with H2O2 evolving O2 through the intermediate formation of O2. Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN. Further kinetic studies indicate that SCN itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H2O2 to O2. Binding studies by optical difference spectroscopy indicate that SCN binds LmAPX (Kd = 100 ± 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

10.
The insulin-sensitizing effect of vanadium complexes has been linked to their ability to inhibit protein tyrosine phosphatases (PTPs). Considering that vanadium complexes may exchange in vivo with amino acids, forming in situ vanadium–amino acid complexes, we have synthesized and characterized an oxovanadium glutamate complex, Na2[V(IV)O(Glu)2(CH3OH)]H2O (1·H2O). The complex showed potent inhibition against four human PTPs (PTP1B, TCPTP, HePTP, and SHP-1) with IC50 in the 0.21–0.37 μM ranges. Fluorescence titration studies suggest that the complex binds to PTP1B with the formation of a 2:1 complex. Enzyme kinetics analysis using Lineweaver–Burk plots indicates a typical competitive inhibition mode.  相似文献   

11.
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr420) or inhibit (Tyr531) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr531 and activates Fyn, while STEP (STriatal‐Enriched protein tyrosine Phosphatase) dephosphorylates Tyr420 and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr789. Dephosphorylation of Tyr789 prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr789, as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn.

  相似文献   


12.
This article describes the employment of a novel p-phenol derivative, 4-(1,2,4-triazol-1-yl)phenol (TRP), as a highly potent signal enhancer of the luminol-hydrogen peroxide (H2O2)-horseradish peroxidase (HRP) chemiluminescence (CL) system. The CL reaction conditions were optimized, and the enhancement characteristics of TRP were compared with those of p-iodophenol (PIP). TRP produced a strong enhancement of the CL with the effect of prolonging the light emission. The developed system was then applied to the determination of H2O2 with immobilized HRP using magnetic beads as a solid support. The linear range for H2O2 was 2.0 × 10−6 to 1.0 × 10−3 M. The detection limit for H2O2 was 2.0 × 10−6 M. The proposed sensor was applied successfully to the determination of H2O2 in rainwater.  相似文献   

13.
14.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

15.
Protein tyrosine phosphatases (PTPs) comprise a superfamily of enzymes that control a diverse array of signal transduction pathways. However, the function and regulation of many of these enzymes remain undefined. Previous studies have shown that the optimal tyrosine phosphorylation response to various exogenous stimuli requires the production of reactive oxygen species (ROS). It has been proposed that ROS might transiently inactivate inhibitory PTPs, thus facilitating tyrosine phosphorylation-dependent signaling. Interestingly, the unique chemistry of the invariant, active site Cys residue located in the signature motif renders it highly susceptible to oxidation, leading to the inactivation of PTPs. We have developed a novel strategy to identify those PTPs that are oxidized and therefore, inactivated in response to extracellular stimuli. Iodoacetic acid (IAA) was used to alkylate selectively the thiolate anion of the active site Cys in the reduced PTPs. In contrast, any PTPs in which the active site Cys had been oxidized in response to the stimulus were resistant to alkylation. Following this key step to differentiate between the two pools of PTPs, the oxidized phosphatases were reduced back to the active state during the process of a standard in-gel PTP activity assay. This novel technique revealed, for the first time, that multiple cellular PTPs were indeed oxidized and inactivated in response to exogenous hydrogen peroxide. We have used this technique extensively to show that the ligand-stimulated production of intracellular hydrogen peroxide reversibly regulates the activity of specific PTPs in vivo. By defining the precise PTP targets of intracellular oxidants, the mechanistic details of signal transduction can be delineated. Due to the potential use of this method in finding the molecular targets of intracellular oxidants in diverse signaling pathways, we describe here the theoretical background and the detailed protocols of the modified in-gel PTP assay.  相似文献   

16.
Peroxiredoxin 2 (Prx2) is a 2-Cys peroxiredoxin extremely abundant in the erythrocyte. The peroxidase activity was studied in a steady-state approach yielding an apparent KM of 2.4 μM for human thioredoxin and a very low KM for H2O2 (?0.7 μM). Rate constants for the reaction of peroxidatic cysteine with the peroxide substrate, H2O2 or peroxynitrite, were determined by competition kinetics, k2 = 1.0 × 108 and 1.4 × 107 M−1 s−1 at 25 °C and pH 7.4, respectively. Excess of both oxidants inactivated the enzyme by overoxidation and also tyrosine nitration and dityrosine were observed with peroxynitrite treatment. Prx2 associates into decamers (5 homodimers) and we estimated a dissociation constant Kd < 10−23 M4 which confirms the enzyme exists as a decamer in vivo. Our kinetic results indicate Prx2 is a key antioxidant enzyme for the erythrocyte and reveal red blood cells as active oxidant scrubbers in the bloodstream.  相似文献   

17.
Gas-phase reactions of HOOOCl with both Cl atom and OH radical are investigated using ab initio methods. The structures of all reactants, products, intermediates, and transition states have been optimized and characterized with the quadratic configuration interaction (QCISD) method. The overall mechanism for the Cl + HOOOCl and OH + HOOOCl reaction is the formation of HCl + O2 + ClO and H2O + O2 + ClO, respectively. The rate-limiting step in each reaction is the abstraction of hydrogen from HOOOCl by either Cl or OH radicals and the barrier height is predicted to be 1.9 kcal mol−1 and 8.1 kcal mol−1 for abstraction by Cl atom and OH radical, respectively. Since both barriers for hydrogen abstraction are high, the reaction is suggested to be slow. These results also suggest that an atmospheric removal mechanism for HOOOCl may result from reaction with Cl atoms rather than with OH radicals, and that photolysis of HOOOCl may be the major removal mechanism for the intermediate.  相似文献   

18.
Protein tyrosine phosphatases (PTPs) are fundamental to the regulation of cellular signalling cascades triggered by protein tyrosine kinases. Most receptor-like PTPs (RPTPs) comprise two tandem PTP domains, with only the membrane proximal domains (D1) having significant phosphatase activity; the membrane distal domains (D2) display little to no catalytic activity. Intriguingly, however, many RPTP D2s share the catalytically essential Cys and Arg residues of D1s. D2 of RPTPalpha may function as a redox sensor that mediates regulation of D1 via reactive oxygen species. Oxidation of Cys723 of RPTPalpha D2 (equivalent to PTP catalytic Cys residues) stabilizes RPTPalpha dimers, induces rotational coupling, and is required for inactivation of D1 phosphatase activity. Here, we investigated the structural consequences of RPTPalpha D2 oxidation. Exposure of RPTPalpha D2 to oxidants promotes formation of a cyclic sulfenamide species, a reversibly oxidized state of Cys723, accompanied by conformational changes of the D2 catalytic site. The cyclic sulfenamide is highly resistant to terminal oxidation to sulfinic and sulfonic acids. Conformational changes associated with RPTPalpha D2 oxidation have implications for RPTPalpha quaternary structure and allosteric regulation of D1 phosphatase activity.  相似文献   

19.
Exogenous oxidative stress induces cell death, but the upstream molecular mechanisms involved of the process remain relatively unknown. We determined the instant dynamic reactions of intracellular reactive oxygen species (ROS, including hydrogen peroxide (H2O2), superoxide radical (O2), and nitric oxide (NO)) in cells exposed to exogenous oxidative stress by using a confocal laser scanning microscope. Stimulation with extracellular H2O2 significantly increased the production of intracellular H2O2, O2, and NO (P < 0.01) through certain mechanisms. Increased levels of intracellular ROS resulted in mitochondrial dysfunction, involving the impairment of mitochondrial activity and the depolarization of mitochondrial membrane potential. Mitochondrial dysfunction significantly inhibited the proliferation of human hepatoblastoma G2 (HepG2) cells and resulted in mitochondrial cytochrome c (cyt c) release. The results indicate that upstream ROS signals play a potential role in exogenous oxidative stress-induced cell death through mitochondrial dysfunction and cyt c release.  相似文献   

20.
The kinetics of the formation of the purple complex [FeIII(EDTA)O2]3−, between FeIII-EDTA and hydrogen peroxide was studied as a function of pH (8.22-11.44) and temperature (10-40 °C) in aqueous solutions using a stopped-flow method. The reaction was first-order with respect to both reactants. The observed second-order rate constants decrease with an increase in pH and appear to be related to deprotonation of FeIII-EDTA ([Fe(EDTA)H2O] ⇔ Fe(EDTA)OH]2− + H+). The rate law for the formation of the complex was found to be d[FeIIIEDTAO2]3−/dt=[(k4[H+]/([H+] + K1)][FeIII-EDTA][H2O2], where k4=8.15±0.05×104 M−1 s−1 and pK1=7.3. The steps involved in the formation of [Fe(EDTA)O2]3− are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号