首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Background  

Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group) protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare), an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins.  相似文献   

5.
6.
7.
Cell identity and differentiation are determined by patterns of regulatory gene expression. Spatially and temporally regulated homeotic gene expression defines segment identities along the anterior-posterior axis of animal embryos. Polycomb group (PcG) proteins form a cellular memory system that maintains the repressed state of homeotic gene expression. Conserved PcG proteins control multiple aspects of Arabidopsis development and maintain homeotic gene repression. In animals, PcG proteins repress their target genes by modifying histone tails through deacetylation and methylation, generating a PcG-specific histone code that recruits other chromatin remodeling proteins to establish a stable, heritable mechanism of epigenetic expression control. Plant PcG proteins might function through a similar biochemical mechanism owing to their conserved structural and functional relationship to animal PcG proteins.  相似文献   

8.
9.
10.
11.
12.
Polycomb group (PcG) genes are required for stable inheritance of epigenetic states across cell divisions, a phenomenon termed cellular memory. PcG proteins form multimeric nuclear complex which modifies the chromatin structure of target site. Drosophila PcG gene extra sex combs (esc) and its vertebrate orthologs constitute a member of ESC-E(Z) complex, which possesses histone methyltransferase activity. Here we report isolation and characterization of medaka esc homolog, termed oleed. Hypomorphic knock-down of oleed using morpholino antisense oligonucleotides resulted in the fusion of eyes, termed cyclopia. Prechordal plate formation was not substantially impaired, but expression of hedgehog target genes was dependent on oleed, suggesting some link with hedgehog signaling. In support of this implication, histone methylation, which requires the activity of esc gene product, is increased in hedgehog stimulated mouse NIH-3T3 cells. Our data argue for the novel role of esc in hedgehog signaling and provide fundamental insight into the epigenetic mechanisms in general.  相似文献   

13.
14.
15.
The genomes are regularly targeted by epigenetic regulatory mechanisms (DNA methylation, histone modifications, binding of regulatory proteins) in infected cells. In addition, proteins encoded by microbial genomes may disturb the action of a set of cellular promoters by interacting with the same epi-regulatory machinery. The outcome of this may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes. How epigenetic methylation decorations on DNA and histones are started and established remains largely unknown. The inherited nature of these processes in regulation of genes suggests that they could play key roles in chronic diseases associated with microbial persistence; they might also explain so-called hit-and-run phenomena in infectious disease pathogenesis. Microbes infecting mammals may cause diseases by causing hyper-methylation of key cellular promoters at CpG di-nucleotides and may induce pathological changes by epigenetic reprogramming of host cells they are interacting with elucidation of the epigenetic consequences of microbe–host interactions may have important therapeutic implications because epigenetic processes can be reverted and elimination of microbes inducing patho-epigenetic changes may prevent disease development.  相似文献   

16.
MOLECULAR MECHANISM OF DNA METH- YLATION REACTION Among all epigenetic mechanisms involved in gene expression regulation, DNA methylation has been the most widely studied subject. DNA methylation results from the transfer of a methyl group from a methyl d…  相似文献   

17.
18.
19.
Epigenetic modifications influence gene expression pattern and provide a unique signature of a cell differentiation status. Without external stimuli or signalling events, this cell identity remains stable and unlikely to change over many cell divisions. The epigenetic signature of a particular cell fate therefore needs to be replicated faithfully in daughter cells; otherwise a cell lineage cannot be maintained. However, the mechanism of transmission of cellular memory from mother to daughter cells remains unclear. It has been suggested that the inheritance of an active or silent gene state involves different kinds of epigenetic mechanisms, e.g. DNA methylation, histone modifications, replacement of histone variants, Polycomb group (PcG) and Trithorax group (TrxG) proteins. Emerging evidence supports the role of histone variant H3.3 in maintaining an active gene status and in remodelling nucleosomal composition. Here we discuss some recent findings on the propagation of epigenetic memory and propose a model for the inheritance of an active gene state through the interaction of H3.3 with other epigenetic components.  相似文献   

20.
Moss TJ  Wallrath LL 《Mutation research》2007,618(1-2):163-174
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号