首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactoperoxidase-catalyzed iodination of intact cells, is known to label predominantly, if not exclusively, the exposed tyrosine residues of cell surface proteins. The present study demonstrates that during this iodination process surface membrane lipids are also iodinated through an enzyme-dependent step. Phosphatidylcholine, cholesterol-phosphatidylcholine liposomes and confluent secondary cultures of chick embryo cells were iodinated by the lactoperoxidase-glucose oxidase-glucose [125I] procedure. Liposomes were efficiently labeled. In the cells, 20–30% of the radioactivity was found in proteins and 20–30% in the lipids. Both neutral and polar lipids were found to bind [125I] covalently. Controls in which lactoperoxidase was omitted showed < 6% of the radioactivity found in liposomes or cells labeled with the enzyme.  相似文献   

2.
K W Lanks  N W Chin 《In vitro》1979,15(7):503-506
Hamster BHK cells or secondary cultures of mouse embryo fibroblasts are not iodinated by lactoperoxidase in the absence of hydrogen peroxide. When such cell cultures are infected with a noncultivable strain of M. hyorhinis, endogenous peroxide generation is sufficient to permit nearly maximal iodination. The SDS-polyacrylamide gel pattern of iodinated cell surface polypeptides is essentially the same regardless of the source of peroxide and whether or not the cultures are infected with mycoplasma.  相似文献   

3.
The enzyme lactoperoxidase was used to specifically iodinate the surface-exposed proteins of chloroplast lamellae. This treatment had two effects on Photosystem II activity. The first, occurring at low levels of iodination, resulted in a partial loss of the ability to reduce 2,6-dichlorophenolindophenol (DCIP), even in the presence of an electron donor for Photosystem II. There was a parallel loss of Photosystem II mediated variable yield fluorescence which could not be restored by dithionite treatment under anaerobic conditions. The same pattern of inhibition was observed in either glutaraldehyde-fixed or unfixed membranes. Analysis of the lifetime of fluorescence indicated that iodination changes the rate of deactivation of the excited state chlorophyll. We have concluded that iodination results in the introduction of iodine into the Photosystem II reaction center pigment-protein complex and thereby introduces a new quenching. The data indicate that the reaction center II is surface exposed.At higher levels of iodination, an inhibition of the electron transport reactions on the oxidizing side of Photosystem II was observed. That portion of the total rate of photoreduction of DCIP which was inhibited by this action could be restored by addition of an electron donor to Photosystem II. Loss of activity of the oxidizing side enzymes also resulted in a light-induced bleaching of chlorophyll a680 and carotenoid pigments and a dampening of the sequence of O2 evolution observed during flash irradiation of treated chloroplasts. All effects on electron transport on the oxidizing side of Photosystem II could be eliminated by glutaraldehyde fixation of the chloroplast lamellae prior to lactoperoxidase treatment. It is concluded that the electron carriers on the oxidizing side of Photosystem II are not surface localized; the functioning of these components is impaired by structural disorganization of the membrane occurring at high levels of iodination.Our data are in agreement with previously published schemes which suggest that Photosystem II mediated electron transport traverses the membrane.  相似文献   

4.
5.
Lactoperoxidase-catalyzed iodination of chloroplast membranes has been employed to characterize the vectorial distribution of lamellar proteins. The enzymatic reaction is highly specific for only the outermost membrane components (Phillips, D. R. and Morrison, M. (1971) Biochemistry 10, 1766–1771); we have determined the distribution of 125I label and changes in photochemical activities after iodination in an effort to identify these components. Three major conclusions are evident:

1. 1. The coupling factor for photophosphorylation is highly exposed and is selectively and rapidly inhibited by the iodination reaction.

2. 2. A loss of Photosystem I activity (NADP reduction) resulted from iodination. Partial reactions indicated the effect was on electron-transport components on the reducing side of Photosystem I. There was also a limited inhibition of methyl viologen reduction.

3. 3. Iodination of intact membranes caused a reduction in rates of Photosystem II-dependent Hill reaction activity. This inhibition could not be explained solely on the basis of iodination effects on electron-transport components involved in the oxidation of water. The implications of these data with respect to previous chloroplast-membrane models are discussed.

Abbreviations: DABS, p-(diazonium)-benzene sulfonic acid; DCMU, 3-(3-4-dichlorophenyl)-1, 1-dimethylurea; DCIP, 2,6-dichlorophenolindophenol; DPC, diphenyl carbazide; PMS, phenazine methosulfate; Tricine, N-Tris-(hydroxymethyl)-methylglycine  相似文献   


6.
Iodination of horse cytochrome c with the lactoperoxidase-hydrogen peroxide-iodide system results initially in the formation of the monoiodotyrosyl 74 derivative. This singly modified protein was obtained in pure form by ion exchange chromatography and preparative column electrophoresis. It shows an intact 695 nm absorption band, the midpoint potential of the native protein, a nuclear magnetic resonance spectrum which indicates an undisturbed heme crevice structure, a normal reaction with antibodies directed against native horse cytochrome c, and circular dichroic spectra in which the only changes from those of the native protein can be ascribed to the spectral properties of iodotyrosine itself. This conformationally intact derivative reacts with the succinate-cytochrome c reductase and the cytochrome c oxidase systems of beef mitochondrial particle preparations indistinguishably from the unmodified protein, showing that the region including tyrosine 74 is not involved in these enzymic electron transfer functions of the protein. The circular dichroic spectra of this derivative indicate that the minima observed at 288 and 282 nm in the spectrum of native ferricytochrome c originate from tyrosyl residue 74.  相似文献   

7.
8.
9.

Background

Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized.

Methodology/Principal Findings

We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices.

Conclusions/Significance

Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection.  相似文献   

10.
Experiments are described in which the large chain of (Na+ + K+)-ATPase is labeled by lactoperoxidase-catalyzed iodination either at its extracytoplasmic surface exclusively or at both its extracytoplasmic and its cytoplasmic surfaces simultaneously. The former was accomplished by labeling intact cells of the Madin-Darby canine kidney line, and the latter by labeling open membrane vesicles, also from canine kidney. A comparison of the specific radioactivities for the large chain from the open membranes and the large chain from the Madin-Darby canine kidney cells reveals that the former was labeled approximately 5-fold more extensively. This indicates that the large chain of (Na+ + K+)-ATPase is situated in the membrane such that more of its mass protrudes into the cytoplasm than into the extracytoplasmic environment.  相似文献   

11.
Ribosomal proteins S7, S9 and S 19 fromEscherichia coli have been studied by the sedimentation equilibrium technique for possible intermolecular interaction between pairs of proteins as well as in a mixture of 3 proteins. The proteins were isolated to a purity greater than 95% and were characterized in the reconstitution buffer. It was observed that none of the proteins has a tendency to self-associate in the concentration range studied in the temperature range 3–6°C. Protein S9 behaves differently in the presence of other proteins. Analysis of the sedimentation equilibrium data for S7-S9, S9-S19 and S7-S9-S19 complexes revealed the need for considering the presence of a component of higher molecular weight in the system along with the monomers and their complexes to provide a meaningful curve-fitting of the data. Proteins S7 and S19 were found to interact with an equilibrium constant of association of 3 ± 2 × 104 M−1 at 3°C with a Gibbs free energy of interaction ΔG° of −5·7 kcal/mol. These data are useful for the consideration of the stabilization of the 3 0S subunit through protein-protein interactions and also help in building a topographical model of the proteins of the small subunit from an energetics point of view. Part of this work was carried out at the Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.  相似文献   

12.
Experiments are described in which the large chain of (Na+ + K+)-ATPase is labeled by lactoperoxidase-catalyzed iodination either at its extracytoplasmic surface exclusively or at both its extracytoplasmic and its cytoplasmic surfaces simultaneously. The former was accomplished by labeling intact cells of the Madin-Darby canine kidney line, and the latter by labeling open membrane vesicles, also from canine kidney. A comparison of the specific radioactivities for the large chain from the open membranes and the large chain from the Madin-Darby canine kidney cells reveals that the former was labeled approximately 5-fold more extensively. This indicates that the large chain of (Na+ + K+)-ATPase is situated in the membrane such that more of its mass protrudes into the cytoplasm than into the extracytoplasmic environment.  相似文献   

13.
14.
Human red blood cells were treated with phospholipase C from Clostridium welchii. Lipase concentrations which produced less than 1% hemolysis and 10-15% hydrolysis of the membrane phospholipids reduced markedly (greater than 80%) the accessibility of membrane proteins to the external surface as measured by lactoperoxidase-catalyzed iodination.  相似文献   

15.
16.
正Dear Editor,Infection with the novel coronavirus (SARS-CoV-2, which is the virus responsible for the coronavirus disease 2019(COVID-19)) was first reported in Wuhan, China on December 31, 2019. The outbreak of COVID-19 remains ongoing and was linked to more than 80,000 infected patients and more than 3,000 deaths in China as of March 7, 2020  相似文献   

17.
18.
19.
20.
Induction of cell-mediated cytotoxicity by shark 19S IgM   总被引:2,自引:0,他引:2  
Plasma from unimmunized nurse sharks can mediate a reaction similar to antibody-dependent cell-mediated cytotoxicity (ADCC). Normal shark plasma contains numerous natural antibodies reactive with a variety of antigens, including the target employed. Adsorption of plasma with target cells removed a significant amount of activity, suggesting involvement of antibody. Purified 19s IgM was shown to be a component of shark plasma capable of inducing cytotoxicity. These cytotoxic reactions differ from observations in homeothermic vertebrates in that shark immunoglobulin appears to bind more avidly to the effector cells than to the targets. The effector leukocytes are glass adherent, but not susceptible to carbonyl iron treatment, which clearly separates them from the phagocytic effectors of spontaneous cytotoxicity. Thus, the shark possesses leukocytes with the capability of mediating an ADCC-like reaction. These leukocytes, in concert with those mediating spontaneous cytotoxicity, could provide the shark with an effective immunosurveillance system. These data also indicate that ADCC mechanisms, with IgM as the primary effector molecule, appeared early in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号