首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We analyzed data from Section 404 permits issued in California from January 1971 through November 1987 that involved impacts to wetlands and required compensatory mitigation (wetland creation, restoration, or preservation). The purpose of this study was to determine patterns and trends in permitting activity and to document cumulative effects of associated management decisions on the California wetland resource. The 324 permits examined documented that 387 compensatory wetlands (1255.9 ha) were required as mitigation for impacts to 368 wetlands (1176.3 ha). The utility of the data on wetland area was limited, however, since 38.0% of the impacted wetlands and 41.6% of the compensatory wetlands lacked acreage data. The wetland type most frequently impacted (37.8% of impacted wetlands) and used in compensation (38.2% of compensatory wetlands) was palustrine forested wetlands. Estuarine intertidal emergent wetlands had the most area impacted (52.3%) and compensated (62.5%). The majority of the wetlands were small (less than or equal to 4.0 ha in size). Wildlife habitat was the most frequently listed function of impacted wetlands (90.7% of the permits) and objective of compensatory wetlands (83.3%). Endangered species were listed as affected in 20.4% of impacted and 21.0% of compensatory projects. The number of permits requiring compensatory mitigation and the number of impacted and compensatory wetlands increased from 1971 to 1986.Documentation of the details of Section 404 permit decisions was inadequate for the permits we examined. Area information and specific locations of impacted and compensatory wetlands were lacking or of poor quality. Follow-up information was also inadequate. For example, project completion dates were specified in the permit for only 2.2% of compensatory wetlands. Furthermore, less than one-third (31.5%) of the permits required the compensatory wetland to be monitored by at least one site visit. We recommend improved documentation, regular reporting, and increased monitoring for better evaluation of the Section 404 permitting system.  相似文献   

3.
Many wetlands have been constructed in West Virginia as mitigation for a variety of human disturbances, but no comprehensive evaluation on their success has been conducted. Macroinvertebrates are extremely valuable components of functioning wetland ecosystems. As such, benthic and water column invertebrate communities were chosen as surrogates for wetland function in the evaluation of 11 mitigation and 4 reference wetlands in West Virginia. Mitigation wetlands ranged in age from 4 to 21 years old. Overall familial richness, diversity, density and biomass were similar between mitigation and reference wetlands (p > 0.05). Within open water habitats, total benthic invertebrate density was higher in reference wetlands, but mass of common taxa from water column samples was higher in mitigation wetlands (p < 0.05) Planorbidae density from benthic samples in emergent habitats was higher in reference than mitigated wetlands. Benthic Oligochaeta density was higher across open water habitats in mitigation wetlands. All other benthic taxa were similar between wetland types. Among the most common water column orders, Isopoda density was higher in reference wetlands, but Physidae density was higher in mitigation wetlands. Within mitigation wetlands, emergent areas contained higher richness and diversity than open areas. These data indicate that mitigation and reference wetlands generally support similar invertebrate assemblages, especially among benthic populations. The few observed differences are likely attributable to differences in vegetative community composition and structure. Mitigation wetlands currently support abundant and productive invertebrate communities, and as such, provide quality habitat for wetland dependent wildlife species, especially waterbirds and anurans.  相似文献   

4.
湿地生态系统设计的一些基本问题探讨   总被引:51,自引:3,他引:51  
湿地生态系统设计是恢复、调整湿地的重要手段,本文3从湿地生态系统设计概念入手,阐述了设计的基本原则。较详细地讨论了设计中的指标(水文指标、化学指标、基质指标和生物指标)要求,根据湿地生态系统设计的用途不同,探讨了3种主要的湿地生态系统设计类型,即作为废水处理湿地的设计,作为调整湿地的系统设计和作为洪水及非点源污染控制的湿地设计。  相似文献   

5.
Numerous efforts have been made in West Virginia to construct and restore compensatory wetlands as mitigation for natural wetlands destroyed through highway development, timbering, mining, and other human activities. Because such little effort has been made to evaluate these wetlands, there is a need to evaluate the success of these systems. The objective of this study was to determine if mitigation wetlands in West Virginia were adequately supporting ecological communities relative to naturally occurring reference wetlands and to attribute specific characteristics in wetland habitat with trends in wildlife abundance across wetlands. Specifically, avian and anuran communities, as well as habitat quality for eight wetland-dependent wildlife species were evaluated. To supplement this evaluation, vegetation and invertebrate communities also were assessed. Wetland ranks were assigned based on several parameters including richness, abundance, diversity, density, and biomass, depending on which taxa was being analyzed. Mitigation wetlands consistently scored better ranks than reference wetlands across all communities analyzed. Canonical correspondence analysis revealed no correlations between environmental variables and community data. However, trends relating wetland habitat characteristics to community structure were observed. These data stress the need to maintain specific habitat characteristics in mitigated wetlands that are compatible with wildlife colonization and proliferation.  相似文献   

6.
1. The ’hydrogeomorphic‘ approach to functional assessment of wetlands (HGM) was developed as a synthetic mechanism for compensatory mitigation of wetlands lost or damaged by human activities. The HGM approach is based on: (a) classification of wetlands by geomorphic origin and hydrographic regime (b) assessment models that associate variables as indicators of function, and (c) comparison to reference wetlands that represent the range of conditions that may be expected in a particular region. In this paper, we apply HGM to riparian wetlands of alluvial rivers. 2. In the HGM classification, riverine wetlands are characterized by formative fluvial processes that occur mainly on flood plains. The dominant water sources are overbank flooding from the channel or subsurface hyporheic flows. Examples of riverine wetlands in the U.S.A. are: bottomland hardwood forests that typify the low gradient, fine texture substratum of the south-eastern coastal plain and the alluvial flood plains that typify the high gradient, coarse texture substratum of western montane rivers. 3. Assessment (logic) models for each of fourteen alluvial wetland functions are described. Each model is a composite of two to seven wetland variables that are independently scored in relation to a reference data set developed for alluvial rivers in the western U.S.A. Scores are summarized by a ’functional capacity index‘ (FCI), which is multiplied by the area of the project site to produce a dimensionless ’functional capacity unit‘ (FCU). When HGM is properly used, compensatory mitigation is based on the FCUs lost that must be returned to the riverine landscape under statutory authority. 4. The HGM approach also provides a framework for long-term monitoring of mitigation success or failure and, if failing, a focus on topical remediation. 5. We conclude that HGM is a robust and easy method for protecting riparian wetlands, which are critically important components of alluvial river landscapes.  相似文献   

7.
Wetland and stream mitigation programs originated to offset the unavoidable impacts to wetlands and streams from activities related to development. Until recently, most mitigation in the United States and globally was done on a case-by-case basis, with site selection based on availability. Today, systematic programs that choose sites based on structural and ecological characteristics that give an indication of the feasibility of the site for wetland and stream mitigation banking are necessary. This paper outlines a three-level framework to select, prioritize, and evaluate potential wetland and stream mitigation banking sites. The framework was tested on three ten-digit hydrologic unit code watersheds in West Virginia that were in three different physiographic regions and near proposed future road construction projects. Level 1 included a Geographic Information System (GIS) based analysis of watersheds and appropriate spatial data. Level 2 was a field reconnaissance survey of sites using evaluation criteria weighted with the pairwise comparison Analytical Hierarchy Process. Level 3 was an on-site evaluation of the highly ranked sites to verify the modeling approach. Results showed successful selection of suitable sites for combined wetland and stream mitigation banking. We found the framework to be an efficient and non-subjective way to identify and prioritize wetland and stream mitigation banking sites and has direct applications for other states or regions.  相似文献   

8.
Many jurisdictions in North America use a “mitigation sequence” to protect wetlands: First, avoid impacts; second, minimize unavoidable impacts; and third, compensate for irreducible impacts through the use of wetland restoration, enhancement, creation, or protection. Despite the continued reliance on this sequence in wetland decision-making, there is broad agreement among scholars, scientists, policymakers, regulators, and the regulated community that the first and most important step in the mitigation sequence, avoidance, is ignored more often than it is implemented. This paper draws on literature published between 1989 and 2010, as well as 33 semi-structured, key-informant interviews carried out in 2009 and 2010 with actors intimately involved with wetland policy in Alberta, Canada, to address key reasons why “avoidance” as a policy directive is seldom effective. Five key factors emerged from the literature, and were supported by interview data, as being central to the failure of decision-makers to prioritize wetland avoidance and minimization above compensation in the mitigation sequence: (1) a lack of agreement on what constitutes avoidance; (2) current approaches to land-use planning do not identify high-priority wetlands in advance of development; (3) wetlands are economically undervalued; (4) there is a “techno-arrogance” associated with wetland creation and restoration that results in increased wetland loss, and; (5) compensation requirements are inadequately enforced. Largely untested but proactive ways to re-institute avoidance as a workable option in wetland management include: watershed-based planning; comprehensive economic and social valuation of wetlands; and long-term citizen-based monitoring schemes.  相似文献   

9.
《Ecological Indicators》2008,8(3):303-307
The Index of Plant Community Integrity (IPCI) was developed to assess wetland plant communities in the Prairie Pothole Region. The IPCI evaluates the condition of wetland plant communities based on disturbance level and multiple community attributes. However, the index was developed for seasonal wetlands from limited spatial and temporal data. We tested the index for seasonal wetlands and developed an index for temporary and semi-permanent wetlands by evaluating vegetative composition of wetlands throughout the Northern Glaciated Plains and Northwestern Glaciated Plains Ecoregions of South Dakota, North Dakota, and Montana. In 2003 and 2004, we selected wetlands based on classification and type of disturbance, ranging from little disturbance (native rangeland) to heavily disturbed (cropland). We analyzed the data using the IPCI vegetation metrics developed for seasonal wetlands, and further analyzed using nonmetric multidimensional scaling and cluster analyses. All vegetation metrics tested were significant in indicating disturbance level. Based on data analysis, five biologically significant groups related to intensity of disturbance (Very good, Good, Fair, Poor, and Very poor) were determined for seasonal wetlands, and three condition classes (Good, Fair, and Poor) for temporary and semi-permanent wetlands. Score ranges were assigned to the metrics according to the determined classes. Using the IPCI method, wetlands throughout the Northern and Northwestern Glaciated Plains of South Dakota, North Dakota, and Montana may be placed into disturbance classes. This data can then be used for ecological purposes and mitigation needs such as monitoring trends on reclaimed or restored wetlands, regional inventories, and for evaluation of ecological functions.  相似文献   

10.
Compensating for wetland losses in the United States   总被引:2,自引:0,他引:2  
Joy B. Zedler 《Ibis》2004,146(S1):92-100
Impacts of climate change on US wetlands will add to those of historical impacts due to other causes. In the US, wetland losses and degradation result from drainage for agriculture, filling for urbanization and road construction. States that rely heavily on agriculture (California, Iowa, Illinois, Missouri, Ohio, Indiana) have lost over 80% of their historical area of wetlands, and large cities, such as Los Angeles and New York City, have retained only tiny remnants of wetlands, all of which are highly disturbed. The cumulative effects of historical and future degradation will be difficult to abate. A recent review of mitigation efforts in the US shows a net loss of wetland area and function, even though 'no net loss' is the national policy and compensatory measures are mandatory. US policy does not include mitigation of losses due to climate change. Extrapolating from the regulatory experience, one can expect additional losses in wetland areas and in highly valued functions. Coastal wetlands will be hardest hit due to sea-level rise. As wetlands are increasingly inundated, both quantity and quality will decline. Recognition of historical, current and future losses of wetland invokes the precautionary principal: avoid all deliberate loss of coastal wetland area in order to reduce overall net loss. Failing that, our ability to restore and sustain wetlands must be improved substantially.  相似文献   

11.
《Ecological Engineering》2005,24(4):331-340
The national goal of no net loss of wetland functions is not being met due to a variety of suboptimal policy and operational decisions. Based on data used to develop a conceptual model of wetland degradation and restoration, we address what can be done operationally to improve the prospects for replacing both the area and functions of mitigated wetlands. We use measures of hydrologic, soil, and biodiversity characteristics from reference standard sites, degraded wetlands, and created wetlands to support our premise. These data suggest that wetland diversity and variability often become more homogeneous when subjected to a set of stressors. The degradation process reduces the original heterogeneity of natural wetlands. In addition, soil characteristics and composition of biological communities of creation projects may mirror those of degraded wetlands. We recommend that scientists and managers use identical sampling protocols to collect data from reference wetlands that can be used to assess the condition of degraded wetlands and to improve the design and performance of mitigation projects.  相似文献   

12.
Habitat loss and degradation are leading causes of biodiversity declines, therefore assessing the capacity of created mitigation wetlands to replace habitat for wildlife has become a management priority. We used single season occupancy models to compare the occurrence of larvae of four species of pond‐breeding amphibians in wetlands created for mitigation, wetlands impacted by road construction, and unimpacted reference wetlands along a highway corridor in the Greater Yellowstone Ecosystem, United States. Created wetlands were shallow and had less aquatic vegetation and surface area than impacted and reference wetlands. Occupancy of barred tiger salamander (Ambystoma mavortium) and boreal chorus frog (Pseudacris maculata) larvae was similar across wetland types, whereas boreal toads (Anaxyrus boreas) occurred more often in created wetlands than reference and impacted wetlands. However, the majority of created wetlands (>80%) dried partially or completely before amphibian metamorphosis occurred in both years of our study, resulting in heavy mortality of larvae and, we suspect, little to no recruitment. Columbia spotted frogs (Rana luteiventris), which require emergent vegetation that is not common in newly created wetlands, occurred commonly in impacted and reference wetlands but were found in only one created wetland. Our results show that shallow created wetlands with little aquatic vegetation may be attractive breeding areas for some amphibians, but may result in high mortality and little recruitment if they fail to hold water for the entire larval period.  相似文献   

13.
Wetlands provide a range of ecosystem services such as drought resistance, flood resistance, nutrient deposition, biodiversity, etc. This study presents a new multi-criteria, ecosystems service value-driven method to drive the optimal placement of restored wetlands in terms of maximizing selected ecosystem services which a wetland can provide or affect. We aim to answer two questions: 1) which of the ecosystem services indicators defines the placement of wetlands today? 2) Based on the ecosystem services indicator assessment, what are the recommendations for future selection of catchments for potential wetland reconstruction (i.e. restoration)?Five key ecosystem services indicators produced or affected by wetlands in Denmark were mapped (recreational potential, biodiversity, nitrogen mitigation potential, inverse land rent, and flash-flood risk). These services were compared to current placements of wetlands. Furthermore, scenario testing and hotspot analysis were combined to provide future recommendations for optimal placements of wetlands. The scenarios investigated were Climate Adaptation and Protection of Aquatic Environment, Land-Based Economy, and Rich Nature. Based on these scenarios, the most suitable areas for wetland reconstruction were mapped, taking both the scenarios and attached weightings of ecosystem services indicators into account.According to statistical results current reconstructed wetlands are situated in catchments with lower biodiversity, higher nitrogen mitigation potential, higher land rent (i.e. agricultural intensive areas), and to some extent higher flash flood risk compared to the median of catchments with wetlands. Hence, recreation potential, high biodiversity, and low land rent has not been prioritized. 35 out of the 3023 catchments investigated were identified with an especially high suitability when optimizing all scenarios. This coincides with a high suitability around peri-urban and urban areas and near natural areas, hence capturing both supply and demand services. Of the 35 identified catchments with potentially high suitability, only 2 actually hold a presently reconstructed wetland. This indicates a prior placement with almost no consideration of maximizing ecosystem services benefits.We recommend a systematic approach, such as the ecosystem service value-driven method demonstrated in the present case study, to target more services and improve the overall benefit from wetlands. This approach seeks to inform decision makers of synergies in the landscape, which is likely to transcend future policy implementations.  相似文献   

14.
Natural wetland ecosystems continue to suffer widespread destruction and degradation. Many recent studies argue that artificial or restored wetlands compensate for wetland loss and are valuable for waterbird conservation. However, detailed comparisons of the value of natural, artificial and restored wetlands are lacking. Our aim was to assess if the restoration or creation of wetlands can fully compensate for the loss of natural wetlands for waterbirds. We compared the waterbird communities in a set of 20 natural, restored and artificial wetlands, all of which are considered important for waterbirds and are located within the same protected area (Doñana Natural Space, south‐west Spain). We used different measures of diversity, including phylogenetic relatedness, and the proportion of threatened species at national, European and international levels. We found that artificial wetlands have consistently lower value than restored and natural wetlands, with little difference between the latter two. Natural wetlands are essential for conserving diversity across the tree of life and for threatened species, but restored wetlands can be of similar value and can assure maintenance of key ecological processes. Thus, when economic costs per unit area are similar, resources for wetland conservation are better invested in restoration projects than in wetland creation, and caution is required when suggesting that artificial wetlands compensate for the loss of natural wetlands.  相似文献   

15.
The economic and ecological importance of wetlands is well documented, but there are few studies that have assessed wetland condition and extent for the United States. Many states, including Kentucky, have had no statewide field evaluation of wetlands of any kind. The National Wetland Inventory (NWI) is the largest database for mapped wetlands in the United States and the most comprehensive source of wetland information for Kentucky, but its value for determining wetland condition is limited. Therefore, our objectives were to document wetland extent and condition and assess the agreement between the NWI and field-based wetland characteristics in Kentucky. We conducted field and remote-sensing based assessments of 352 wetlands across the state. NWI-mapped and field-assessed wetlands had similar large-scale patterns; however, for individual wetlands, classification often disagreed. Based on our wetland assessment method, wetlands appear to be of moderate condition, although we found differences among basins, dominant vegetation types, and landscape positions and much variation as many sites scored very low and high. Our findings support previous work showing that rapid assessments are valuable for determining wetland condition for ambient monitoring and other applications. Also, our results provide the foundation for future status and trends studies and suggest an urgent need to update the NWI in Kentucky and elsewhere. We suggest that the NWI could be improved by using newer technology that increases wetland mapping accuracy and including predictions of wetland condition using the enhanced NWI approach.  相似文献   

16.
Wetland restoration practices can include rehabilitating degraded wetlands or creating new wetlands. Empirical evidence is needed to determine if both rehabilitated and created wetlands can support the same macroinvertebrate communities as their natural counterparts. We measured long‐term macroinvertebrate community change in seasonal wetlands known as Delmarva Bays in Maryland, U.S.A. We compared a rehabilitated, a created, and a natural Delmarva Bay. We hypothesized that the created and rehabilitated wetlands would develop different macroinvertebrate communities. We also hypothesized that the community composition of the rehabilitated wetland would become more similar to that of the natural wetland than to that of the created wetland over 9 years encompassed by this study. We monitored the macroinvertebrates, including both predators and primary consumers, and environmental conditions in the three wetlands from March to August in 2005, 2006, 2007, and 2012. Cluster analysis indicated that from 2005 to 2007, the macroinvertebrate community of the rehabilitated wetland and the created wetland were more similar to each other than to the natural wetland. In 2012, the rehabilitated wetland was more similar to the natural wetland than to the created wetland. This similarity was driven principally by changes in the composition of primary consumer taxa. Our results suggest that rehabilitated Delmarva Bays are more likely to support a natural macroinvertebrate community than are created wetlands. Restoration practices that rehabilitate existing wetlands may be preferred over practices that create new wetlands when restoration project goals include developing natural macroinvertebrate communities in a short period of time.  相似文献   

17.
Many studies have chronicled the early development of vegetation in wetlands created as mitigation for wetland impacts; however, very few studies have followed the floristics of wetlands that are more than 10 years post-creation. This article reports the results of vegetation composition and structural analysis within eleven 20-yr-old created non-tidal, emergent wetlands. Vegetation and inundation were sampled in 173 plots within 11 wetlands during the 1992 and 1994 growing seasons. A drought occurred in 1993, thus analyses characterized vegetative response and included weighted average (weighted by the tolerance of the species to excess soil moisture), species richness, species composition, and life history strategy. Weighted average and species richness increased in 7 and 10 of the 11 sites, respectively. There was little change among most species including Typha latifolia and Scirpus cyperinus, the two species with highest importance values (IV). However, among the top 10 species ranked by IV, two aquatic species decreased and a facultative species increased. Only one of the 10 most important species, Eleocharis obtusa, was an annual and only one, Salix nigra, was a woody perennial and the IV of both species declined during the study. After 20 years, a transition from annual to perennial graminoid life histories is suggested; however, succession from emergent to shrub–scrub or forested wetland is not indicated.  相似文献   

18.
Created wetlands are frequently structurally different from the natural wetlands they are intended to replace. With differences in structure might come differences in function. Most created wetlands in central Pennsylvania have very low amounts of soil organic matter relative to levels found in natural wetlands. However, anecdotal evidence also suggests that plant production is equivalent in created wetlands to natural wetlands. There is little evidence to indicate that this plant biomass in created wetlands is finding its way into the soil as organic matter. This might translate into a lack of function in the mitigation wetlands. To address this issue, we studied plant biomass production in seven created wetlands in central Pennsylvania (USA). We measured above- and below-ground biomass and compared results with known values of soil organic matter and hydrology for the same wetlands. We found biomass to be approximately equivalent to that produced in natural freshwater marshes, although the below-ground component was somewhat higher. We found no relationship of biomass to soil organic matter, even though site conditions were wet enough to retard plant decomposition.  相似文献   

19.
Under section 401 and section 404 of the Clean Water Act, permission to degrade existing natural wetlands in the USA may be conditional on restoring or creating ‘replacement’ wetlands. Success of wetland mitigation efforts in adequately replacing lost wildlife habitats depends on our good understanding of key ecological attributes that affect the structure of wetland faunal communities. We examined the effects of the presence of predatory fish, shallow vegetated littoral zone, emergent vegetation cover, wetland age and size on amphibian diversity in 42 replacement wetlands located in the Ohio’s North Central Tillplain ecoregion. We recorded 13 species of pond-breeding amphibians, and the average local species richness (α-richness) was 4.2 ± 1.7 species per site (range 1–7). There is strong evidence for the positive association between amphibian species richness and presence of a shallow littoral zone, and the negative association with presence of predatory fish. There was no evidence for the association between species richness and age, size, amount of forest cover within 200 m, nor the amount of emergent vegetation cover at the study sites. It is estimated that local species richness in wetlands with shallows was 1.76 species higher on average than in wetlands without shallows (95% CI from 0.75 to 2.76). The presence of predatory fish was associated with an average reduction in species richness by an estimated 1.21 species (95% CI from 0.29 to 2.11). Replacement wetlands were placed in areas with little or no existing forest cover, and amphibian species associated with forested wetlands were either rare (eastern newt, spotted salamander) or not present at all (marbled salamander, wood frog). In addition, we surveyed all replacement wetlands constructed under section 401 in Ohio since 1990, and found that predatory fish were present in 52.4% of the sites and that shallows were absent from 42.7% of the sites. Our results indicate that current wetland replacement practices could have a negative effect on the amphibian diversity within our region.  相似文献   

20.
Litter decomposition in created and reference wetlands in West Virginia,USA   总被引:1,自引:0,他引:1  
Large amounts of resources have gone into wetland mitigation in recent years; however, it is still unclear whether wetland function is being replaced along with wetland area. Litter decomposition is linked to numerous wetland functions. In this study, we measured plant litter decomposition potential over 12 months in 8 created and 8 reference wetlands located in the Allegheny Mountains of West Virginia, USA. Broadleaf cattail (Typha latifolia L.) litter bags were placed in each wetland and collected at 3 month intervals. Linear decomposition rate constants and percent mass remaining were similar between wetland types (created and reference) and among Cowardin classifications (palustrine: unconsolidated bottom, aquatic bed, emergent, and scrub/shrub). Created wetland age was not correlated with decomposition potential. Our study found that created wetlands had similar litter decomposition potential as reference wetlands indicating that similar processes are likely acting upon litter decomposition within both natural and created wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号