首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of protein-protein interactions is essential for elucidating the biochemical mechanism of signal transduction. Purification and identification of individual proteins in mammalian cells have been difficult, however, due to the sheer complexity of protein mixtures obtained from cellular extracts. Recently, a tandem affinity purification (TAP) method has been developed as a tool that allows rapid purification of native protein complexes expressed at their natural level in engineered yeast cells. To adapt this method to mammalian cells, we have created a TAP tag retroviral expression vector to allow stable expression of the TAP-tagged protein at close to physiological levels. To demonstrate the utility of this vector, we have fused a TAP tag, consisting of a protein A tag, a cleavage site for the tobacco etch virus (TEV) protease, and the FLAG epitope, to the N terminus of human SMAD3 and SMAD4. We have stably expressed these proteins in mammalian cells at desirable levels by retroviral gene transfer and purified native SMAD3 protein complexes from cell lysates. The combination of two different affinity tags greatly reduced the number of nonspecific proteins in the mixture. We have identified HSP70 as a specific interacting protein of SMAD3. We demonstrated that SMAD3, but not SMAD1, binds HSP70 in vivo, validating the TAP purification approach. This method is applicable to virtually any protein and provides an efficient way to purify unknown proteins to homogeneity from the complex mixtures found in mammalian cell lysates in preparation for identification by mass spectrometry.  相似文献   

2.
Identification of proteins in RNA-protein complexes is an important step toward understanding regulation of RNA-based processes. Because of the lack of appropriate methodologies, many studies have relied on the creation of in vitro assembled RNA-protein complexes using synthetic RNA and cell extracts. Such complexes may not represent authentic RNPs as they exist in living cells as synthetic RNA may not fold properly and nonspecific RNA-protein interactions can form during cell lysis and purification processes. To circumvent limitations in current approaches, we have developed a novel integrated strategy namely MS2 in vivo biotin tagged RNA affinity purification (MS2-BioTRAP) to capture bona fide in vivo-assembled RNA-protein complexes. In this method, HB-tagged bacteriophage protein MS2 and stem-loop tagged target or control RNAs are co-expressed in cells. The tight association between MS2 and the RNA stem-loop tags allows efficient HB-tag based affinity purification of authentic RNA-protein complexes. Proteins associated with target RNAs are subsequently identified and quantified using SILAC-based quantitative mass spectrometry. Here the 1.2 kb internal ribosome entry site (IRES) from lymphoid enhancer factor-1 mRNA has been used as a proof-of-principle target RNA. An IRES target was chosen because of its importance in protein translation and our limited knowledge of proteins associated with IRES function. With a conventionally translated target RNA as control, 36 IRES binding proteins have been quantitatively identified including known IRES binding factors, novel interacting proteins, translation initiation factors (eIF4A-1, eIF-2A, and eIF3g), and ribosomal subunits with known noncanonical actions (RPS19, RPS7, and RPL26). Validation studies with the small molecule eIF4A-1 inhibitor Hippuristanol shows that translation of endogenous lymphoid enhancer factor-1 mRNA is especially sensitive to eIF4A-1 activity. Our work demonstrates that MS2 in vivo biotin tagged RNA affinity purification is an effective and versatile approach that is generally applicable for other RNA-protein complexes.  相似文献   

3.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

4.
Giannone RJ  McDonald WH  Hurst GB  Huang Y  Wu J  Liu Y  Wang Y 《BioTechniques》2007,43(3):296, 298, 300 passim
Although affinity purification coupled with mass spectrometry (MS) provides a powerful tool to study protein-protein interactions, this strategy has encountered numerous difficulties when adapted to mammalian cells. Here we describe a Gateway-compatible dual-tag affinity purification system that integrates regulatable expression, tetracysteine motifs, and various combinations ofaffinity tags to facilitate the cloning, detection, and purification of bait proteins and their interacting partners. Utilizing the human telomere binding protein TRF2 as a benchmark, we demonstrate bait protein recoveries upwards of approximately 16% from as little as 1-7 x 10(7) cells and successfully identify known TRF2 interacting proteins, suggesting that our dual-tag affinity purification approach is a capable new tool for expanding the capacity to explore mammalian proteomic networks.  相似文献   

5.
Protein-protein interactions (PPIs) are central to our understanding of protein function, biological processes and signaling pathways. Affinity purification coupled with mass spectrometry (AP-MS) is a powerful approach for detecting PPIs and protein complexes and relies on the purification of bait proteins using bait-specific binding reagents. These binding reagents may recognize bait proteins directly or affinity tags that are fused to bait proteins. A limitation of the latter approach is that expression of affinity tagged baits is largely constrained to engineered or unnatural cell lines, which results in the AP-MS identification of PPIs that may not accurately reflect those seen in nature. Therefore, generating cell lines stably expressing affinity tagged bait proteins in a broad range of cell types and cell lines is important for identifying PPIs that are dependent on different contexts. To facilitate the identification of PPIs across many mammalian cell types, we developed the mammalian affinity purification and lentiviral expression (MAPLE) system. MAPLE uses recombinant lentiviral technology to stably and efficiently express affinity tagged complementary DNA (cDNA) in mammalian cells, including cells that are difficult to transfect and non-dividing cells. The MAPLE vectors contain a versatile affinity (VA) tag for multi-step protein purification schemes and subcellular localization studies. In this methods article, we present a step-by-step overview of the MAPLE system workflow.  相似文献   

6.
Over-expression and purification of soluble and functional proteins remain critical challenges for many aspects of biomolecular research. To address this, we have developed a novel protein tag, HaloTag7, engineered to enhance expression and solubility of recombinant proteins and to provide efficient protein purification coupled with tag removal. HaloTag7 was designed to bind rapidly and covalently with a unique synthetic linker to achieve an essentially irreversible attachment. The synthetic linker may be attached to a variety of entities such as fluorescent dyes and solid supports, permitting labeling of fusion proteins in cell lysates for expression screening, and efficient capture of fusion proteins onto a purification resin. The combination of covalent capture with rapid binding kinetics overcomes the equilibrium-based limitations associated with traditional affinity tags and enables efficient capture even at low expression levels. Following immobilization on the resin, the protein of interest is released by cleavage at an optimized TEV protease recognition site, leaving HaloTag7 bound to the resin and pure protein in solution. Evaluation of HaloTag7 for expression of 23 human proteins in Escherichia coli relative to MBP, GST and His6Tag revealed that 74% of the proteins were produced in soluble form when fused to HaloTag7 compared to 52%, 39% and 22%, respectively, for the other tags. Using a subset of the test panel, more proteins fused to HaloTag7 were successfully purified than with the other tags, and these proteins were of higher yield and purity.  相似文献   

7.
We present a novel approach that relies on the affinity capture of protein interaction partners from a complex mixture, followed by their covalent fixation via UV‐induced activation of incorporated diazirine photoreactive amino acids (photo‐methionine and photo‐leucine). The captured protein complexes are enzymatically digested and interacting proteins are identified and quantified by label‐free LC/MS analysis. Using HeLa cell lysates with photo‐methionine and photo‐leucine‐labeled proteins, we were able to capture and preserve protein interactions that are otherwise elusive in conventional pull‐down experiments. Our approach is exemplified for mapping the protein interaction network of protein kinase D2, but has the potential to be applied to any protein system. Data are available via ProteomeXchange with identifiers PXD005346 (photo amino acid incorporation) and PXD005349 (enrichment experiments).  相似文献   

8.
Although cultured mammalian cells are preferred for producing functional mammalian proteins with appropriate post-translational modifications, purification of recombinant proteins is frequently hampered by low expression. We have addressed this by creating a new method configured specifically for mammalian cell culture that provides rapid detection and efficient purification. This approach is based on HaloTag, a protein fusion tag designed to bind rapidly, selectively and covalently to a series of synthetic ligands that can carry a variety of functional groups, including fluorescent dyes for detection or solid supports for purification. Since the binding of HaloTag to the HaloLink resin is essentially irreversible, it overcomes the equilibrium-based binding limitations associated with affinity tags and enables efficient capture and purification of target protein, even at low expression levels. The target protein is released from the HaloLink resin by specific cleavage using a TEV protease fused to HaloTag (HaloTEV), leaving both HaloTag and HaloTEV permanently attached to the resin and highly pure, tag-free protein in solution. HaloTag fluorescent ligands enable fluorescent labeling of HaloTag fusion proteins, providing a convenient way to monitor expression, and thus facilitate the identification of optimal transient transfection conditions as well as the selection of high expression stable cell lines. The capabilities of this method have been demonstrated by the efficient purification of five functional human kinases from HEK293T cells. In addition, when purifications using FLAG, 3xFLAG, His(6)Tag and HaloTag were performed in parallel, HaloTag was shown to provide significantly higher yields, purity and overall recovery of the expressed proteins.  相似文献   

9.
Previous high throughput data analysis from several different approaches to affinity purification of protein complexes have revealed catalogues of contaminating proteins that persistently co-purify. Some of these contaminating proteins appear to be specific to one particular affinity matrix used or even to the artificial affinity tags introduced into endogenous proteins for the purpose of purification.A recent approach to minimising non-specific protein interactions in high throughput screens utilises pre-equilibration of affinity surfaces with thiocyanate anions to reduce non-specific binding of proteins. This approach not only reduces the effect of contaminating proteins but also promotes the enrichment of the specific binding partners. Here, we have taken this method and adapted it in an attempt to reduce the abundance of common contaminants in affinity purification experiments. We found the effect varied depending on the bait used, most likely due to its endogenous abundance.  相似文献   

10.
The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S‐transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine‐containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7‐triazacyclononane (tacn). The use of this tag‐tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli‐expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP‐1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI‐TOF MS analysis of the cleaved products from the DAP‐1 digestion of the recombinant N‐terminally tagged proteins confirmed the complete removal of the tag within 4‐12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn‐based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli‐expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%.  相似文献   

12.
Determining the localization, binding partners, and secondary modifications of individual proteins is crucial for understanding protein function. Several tags have been constructed for protein localization or purification under either native or denaturing conditions, but few tags permit all three simultaneously. Here, we describe a multifunctional tandem affinity purification (MAP) method that is both highly efficient and enables protein visualization. The MAP tag utilizes affinity tags inserted into an exposed surface loop of mVenus offering two advantages: (1) mVenus fluorescence can be used for protein localization or FACS-based selection of cell lines; and (2) spatial separation of the affinity tags from the protein results in high recovery and reduced variability between proteins. MAP purification was highly efficient in multiple organisms for all proteins tested. As a test case, MAP combined with liquid chromatography-tandem MS identified known and new candidate binding partners and modifications of the kinase Plk1. Thus the MAP tag is a new powerful tool for determining protein modification, localization, and interactions.  相似文献   

13.
Protein receptor-ligand interactions play important roles in mediating enzyme catalysis, signal transduction, and other protein functions. Immunoaffinity purification followed by mass spectrometry analysis is a common method for identifying protein receptor-ligand complexes. However, it is difficult to distinguish between specific protein binding partners and non-specifically bound proteins that co-purify with the complex. In addition, weakly interacting binding partners may dissociate from the protein receptor-ligand complexes during immunoaffinity purification. The combination of chemical crosslinking, affinity purification, and differential mass spectrometry analysis provides a direct method for capturing stable, weak, and transient protein interactions that occur in vivo and in vitro. This approach enables the identification of functional receptor-ligand binding partners with high confidence. Herein, we describe a differential mass spectrometry approach coupled with in situ chemical crosslinking and immunoaffinity purification for identifying receptor-ligand binding partners. In particular, we identified a functional, counter-ligand structure of the natural killer cell p30-related protein.  相似文献   

14.
D Ron  H Dressler 《BioTechniques》1992,13(6):866-869
We report on the construction of a plasmid, pGSTag, that directs the expression in E. coli of a glutathione S-transferase fusion protein that contains a high affinity phosphorylation site by protein kinase-A (PK-A). The fusion protein, following purification from crude bacterial lysates by substrate affinity chromatography, can be labeled in vitro to high specific activity with purified PK-A and 32P-gamma-ATP. Because labeling takes place while the fusion protein is immobilized on a solid support, the unincorporated label and enzyme can be washed away. Using the leucine-zipper domains of cAMP response element binding (CREB) proteins and CCAAT/enhancer binding protein (C/EBP)-like proteins as a model system, we show that the labeled protein, after elution from the affinity resin, can be used as a probe to detect interacting (dimerizing) species in a nitrocellulose-based ligand blot assay. The utility of this system for the creation of labeled protein probes is discussed.  相似文献   

15.
There is currently no generic, simple, low-cost method for affinity chromatographic purification of proteins in which the purified product is free of appended tags. Existing approaches for the purification of tagless proteins fall into two broad categories: (1) direct affinity-based capture of tag-free proteins that utilize affinity ligands specific to the target protein or class of target protein, and (2) removal of an appended affinity tag following tag-mediated protein capture. This paper reviews current state-of-the-art approaches for tagless protein purification in both categories, including specific examples of affinity ligands used for the capture of different classes of proteins and cleavage systems for affinity tag removal following chromatographic capture. A particular focus of this review is on recent developments in affinity tag removal systems utilizing split inteins.  相似文献   

16.
The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs “tag-ligand” combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established “tag-ligand” systems available for fusion protein purification and also explores current unconventional strategies under development.  相似文献   

17.
Chang IF 《Proteomics》2006,6(23):6158-6166
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.  相似文献   

18.
19.
The combination of affinity purification and tandem mass spectrometry (MS) has emerged as a powerful approach to delineate biological processes. In particular, the use of epitope tags has allowed this approach to become scaleable and has bypassed difficulties associated with generation of antibodies. Single epitope tags and tandem affinity purification (TAP) tags have been used to systematically map protein complexes generating protein interaction data at a near proteome-wide scale. Recent developments in the design of tags, optimisation of purification conditions, experimental design and data analysis have greatly improved the sensitivity and specificity of this approach. Concomitant developments in MS, including high accuracy and high-throughput instrumentation together with quantitative MS methods, have facilitated large-scale and comprehensive analysis of multiprotein complexes.  相似文献   

20.
Affinity tags are often used to accomplish recombinant protein purification using immobilized metal affinity chromatography. Success of the tag depends on the chelated metal used and the elution profile of the host cell proteins. Zn(II)-iminodiacetic acid (Zn(II)-IDA) may prove to be superior to either immobilized copper or nickel as a result of its relatively low binding affinity for cellular proteins. For example, almost all Escherichia coli proteins elute from Zn(II)-IDA columns between pH 7.5 and 7.0 with very little cellular protein emerging at pH values lower than 7.0. Thus, a large portion of the Zn(II)-IDA elution profile may be free of contaminant proteins, which can be exploited for one-step purification of a target protein from raw cell extract. In this paper we have identified several fusion tags that can direct the elution of the target protein to the low background region of the Zn(II)-IDA elution profile. These tags allow targeting of proteins to different regions of the elution profile, facilitating purification under mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号