首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP (CTP):tRNA nucleotidyltransferase (EC 2.7.7.25) has been purified from wild type cells of the yeast Saccharomyces cerevisiae, as well as from a strain that overproduces the activity. Purification from the wild type strain was accomplished with a multistep protocol including ammonium sulfate fractionation, anion exchange chromatography, gel filtration, and affinity chromatography. The purified enzyme is near homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and at 59,000 Da is smaller than reported previously. A similar molecular mass is obtained by gel filtration demonstrating that the enzyme is active as a monomer. The pH optimum for the enzyme is around 9.5. The apparent KM values for ATP and CTP were determined to be 5.6 x 10(-4) M and 1.8 x 10(-4) M, respectively. Purification of the enzyme from the overproducing cells was accomplished by a three step protocol with high yield. The nucleotidyltransferase activity from the overproducing cells had a KM for CTP indistinguishable from that of the wild type enzyme, and the mobility of the protein on sodium dodecyl sulfate gels was the same regardless of the source. Thus, the overproducing strain appears to be a good source for large amounts of yeast nucleotidyltransferase for further biochemical and structural studies.  相似文献   

2.
Arginase (EC 3.5.3.1; L-arginine amidinohydrolase) is a key enzyme of the urea cycle that catalyses the conversion of arginine to ornithine and urea, which is the final cytosolic reaction of urea formation in the mammalian liver. The recombinant strain of the yeast Saccharomyces cerevisiae that is capable of overproducing arginase I (rhARG1) from human liver under the control of the efficient copper-inducible promoter CUP1, was constructed. The (His)(6)-tagged rhARG1 was purified in one step from the cell-free extract of the recombinant strain by metal-affinity chromatography with Ni-NTA agarose. The maximal specific activity of the 40-fold purified enzyme was 1600 μmol min(-1) mg(-1) protein.  相似文献   

3.
Glutamyl-tRNA reductase catalyzes the initial step of tetrapyrrole biosynthesis in plants and prokaryotes. Recombinant Escherichia coli glutamyl-tRNA reductase was purified to apparent homogeneity from an overproducing E. coli strain by a two-step procedure yielding 5.6 mg of enzyme per gram of wet cells with a specific activity of 0.47 micromol min(-1)mg(-1). After recombinant production, denatured glutamyl-tRNA reductase from inclusion bodies was renatured by an on-column refolding procedure. Residual protein aggregates were removed using Superdex 200 gel-filtration chromatography. Solubility, specific activity, and long-term storage properties were improved compared to previous protocols. Obtained enzyme amounts of high purity now allow the research on the recognition mechanism of tRNAGlu and high-throughput inhibitor screening.  相似文献   

4.
Purification of Escherichia coli DNA photolyase   总被引:22,自引:0,他引:22  
Escherichia coli photolyase is a DNA repair enzyme which monomerizes pyrimidine dimers, the major UV photoproducts in DNA, to pyrimidines in a light-dependent reaction. We recently described the construction of a tac-phr plasmid that greatly overproduces the enzyme (Sancar, G. B., Smith, F. W., and Sancar, A. (1983) Nucleic Acids Res. 11, 6667-6678). Using a strain carrying the overproducing plasmid as the starting material, we have developed a purification procedure that yields several milligrams of apparently homogeneous enzyme. The purified protein is a single polypeptide that has an apparent Mr of 49,000 under both denaturing and nondenaturing conditions. The enzyme has no requirement for divalent cations and it restores the biological activity of irradiated DNA only in the presence of photoreactivating light. The purified photolyase has a turnover number of 2.4 dimers/molecule/min; this value agrees well with the in vivo rate of photoreactivation in E. coli.  相似文献   

5.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated form an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the alpha- and beta-subunits composing the native alpha 2 beta 2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

6.
7.
Escherichia coli RNase HII is composed of 198 amino acid residues. The enzyme has been overproduced in an insoluble form, purified in a urea-denatured form, and refolded with poor yield [M. Itaya (1990) Proc. Natl. Acad. Sci. USA 87, 8587-8591]. To facilitate the preparation of the enzyme in an amount sufficient for physicochemical studies, we constructed an overproducing strain in which E. coli RNase HII is produced in a soluble form. The enzyme was purified from this strain and its biochemical and physicochemical properties were characterized. The good agreement in the molecular weights estimated from SDS-PAGE (23,000) and gel filtration (22,000) suggests that the enzyme acts as a monomer. From the far-UV circular dichroism spectrum, its helical content was calculated to be 23%. The enzyme showed Mn(2+)-dependent RNase H activity. Its specific activity determined using (3)H-labeled M13 RNA/DNA hybrid as a substrate was comparable to but slightly higher than that of the refolded enzyme, indicating that the enzyme overproduced and purified in a soluble form is more suitable for structural and functional analyses than the refolded enzyme.  相似文献   

8.
The enzyme chorismate synthase was purified in milligram quantities from an overproducing strain of Escherichia coli. The amino acid sequence was deduced from the nucleotide sequence of the aroC gene and confirmed by determining the N-terminal amino acid sequence of the purified enzyme. The complete polypeptide chain consists of 357 amino acid residues and has a calculated subunit Mr of 38,183. Cross-linking and gel-filtration experiments show that the enzyme is tetrameric. An improved purification of chorismate synthase from Neurospora crassa is also described. Cross-linking and gel-filtration experiments on the N. crassa enzyme show that it is also tetrameric with a subunit Mr of 50,000. It is proposed that the subunits of the N. crassa enzyme are larger because they contain a diaphorase domain that is absent from the E. coli enzyme.  相似文献   

9.
DNA modifications induced either by photosensitization (illumination in the presence of methylene blue) or by chemically generated singlet oxygen (thermal decomposition of an 1,4-etheno-2,3-benzodioxin) are recognized and incised by repair endonucleases present in crude bacterial cell extracts. Only a small fraction of the incised modifications are sites of base loss (AP-sites) sensitive to exonuclease III, endonuclease IV from E. coli or to the UV-endonuclease from M. luteus. Cell extracts from E. coli strains overproducing or defective in endonuclease III recognize the modifications induced by illumination in the presence of methylene blue just as well as do those from wild-type E. coli strains. This indicates that dihydropyrimidine derivatives, which are characteristic of hydroxyl radical-induced DNA modifications, are absent. In contrast, most of the modifications induced are not recognized by a cell extract from a fpg strain defective in formamidopyrimidine-DNA glycosylase FPG protein). Furthermore, incision by a cell extract from an E. coli strain overproducing FPG protein takes place at much lower protein concentration than with the wild-type strain. Experiments with purified FPG protein confirm that this enzyme is responsible for the recognition of singlet oxygen-induced DNA base modifications.  相似文献   

10.
The phenylalanine-inhibitable 3-deoxy-D-arabino-heptulosonate-7-phosphate (dHp1P) synthase from Saccharomyces cerevisiae has been purified to apparent homogeneity by a 1250-fold enrichment of the enzyme activity present in wild-type crude extracts, employing an overproducing strain. The estimated molecular mass of 42 kDa corresponds to the calculated molecular mass of 42.13 kDa deduced from the previously determined primary sequence. Gel filtration indicates that the active enzyme is a monomer. The enzyme is an Fe protein and is inactivated by EDTA in a reaction which is reversible by several bivalent metal ions. The Michaelis constant of the enzyme is 18 microM for phosphoenolpyruvate (P-pyruvate) and 130 microM for erythrose 4-phosphate (Ery4P) and the rate constant was calculated as 10 s-1. Inhibition by phenylalanine is competitive with respect to erythrose 4-phosphate and non-competitive to phosphoenolpyruvate, with a Ki of 10 microM.  相似文献   

11.
A simple three-step procedure for the large scale purification of DNA ligase has been developed. THe source of enzyme is a strain of Escherichia coli with a hybrid lambda prophage constructed in vitro that bears the ligase overproducing gene lop 11 lig+ (Panasenko, S., Cameron, J., Davis, R. W., and Lehman, I. R. (1977) Science 196, 188-189). The procedure yields homogeneous enzyme in approximately 40% yield.  相似文献   

12.
A recombinant plasmid, pHW1, directing the overproduction of the enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase, EC 3.6.1.23) from Escherichia coli has been constructed. A 1900-base DNA fragment carrying the structural gene for the enzyme (dut) has been recloned into a runaway replication vector that also carries the strong leftward promoter (pL) of bacteriophage lambda. Upon temperature shift, an E. coli strain carrying the new plasmid gives an increase in dUTPase activity of about 600-fold in rich medium compared to wild-type bacteria. The 64-kDa protein corresponding to the mature form of the enzyme reaches 20% of the total protein content of the bacterial cell. Using this strain, a simplified procedure has been developed for the purification of dUTPase. The purification steps consist of extraction of the cytoplasmic proteins, ammonium sulfate precipitation, anion-exchange chromatography and gel filtration on FPLC. The new overproducing plasmid and the simplified purification procedure developed will make it possible to purify dUTPase in sufficient amounts for detailed characterization studies.  相似文献   

13.
The letA (ccdA) and letD (ccdB) genes of F plasmid contribute to stable maintenance of the plasmid in Escherichia coli cells; a product of the latter has a lethal effect on the host cell and that of the former neutralizes functions of the letD. In cells that overproduce the LetD (CcdB) protein, the plasmid DNA is extensively relaxed. Correspondingly, DNA supercoiling activity in a cell-free extract of the overproducing strain decreases to a level of less than 1% of that seen in normal cells. However, the extract does not inhibit DNA gyrase reconstituted from purified subunits, thereby indicating that the intrinsic DNA gyrase is inactivated in the overproducing strain. Upon addition of purified LetA (CcdA) protein to the extract of LetD overproducing cells, the DNA supercoiling activity was fully restored. Using this rejuvenation as an assay, we purified the "inactivated gyrase" and obtained evidence that the LetD protein formed an isolable complex with the A subunit of DNA gyrase. Thus, the LetD and the LetA proteins constitute an opposing pair in modulating the DNA supercoiling activity of gyrase, probably by direct interaction.  相似文献   

14.
A method for the purification of enolase (EC 4.2.1.11) from an overproducing strain ofEscherichia coli JA 200 pLC 11–8 is described. The procedure included treatment of the crude sonic extract with protamine sulfate, followed by ammonium sulfate fractionation, hydrophobic interaction chromatography with phenyl Sepharose, HPLC ion exchange chromatography with a DuPont Sax column, and HPLC hydrophobic interaction chromatography with a Bio-Rad 5-PW column. The enzyme was purified to homogeneity as determined by silver staining of 10% sodium dodecylsulfate polyacrylamide gels. The native molecular weight ofE. coli enolase was found to be 92 kilodaltons and consisted of two subunits of identical molecular weight, 46 kilodaltons each. The isoelectric point was found to be 4.9.  相似文献   

15.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated from an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the α- and β-subunits composing the native α2β2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

16.
The alanine racemase encoded by the Salmonella typhimurium dadB gene was purified to 90% homogeneity from an overproducing strain. At 37 degrees C the enzyme has a specific activity of 1400 units/mg (V max, L- to D-alanine). Active enzyme molecules are monomers of Mr 39 000 with one molecule of pyridoxal 5'-phosphate bound per subunit. The Km's for L- and D-alanine are 8.2 and 2.1 mM, respectively. Measurement of turnover numbers yielded the expected Keq value of 1.0. Determination of 22 of the 25 N-terminal amino acid residues of the purified polypeptide allowed localization of cloned DNA encoding the structural gene. Sequencing of subcloned DNA revealed that the dadB gene encodes a polypeptide of 356 amino acids whose calculated molecular weight (apoenzyme) was 39 044.  相似文献   

17.
Anthranilate phosphoribosyltransferase from Saccharomyces cerevisiae has been purified to homogeneity from an overproducing strain. Analytical ultracentrifugation demonstrated that the enzyme is a dimer of Mr = 83,000 +/- 4,000 (S20.w = 4.7 S). Moreover, as shown by active enzyme sedimentation, the enzyme remains dimeric even at low concentrations. The presence of yeast phosphoribosylanthranilate isomerase in the gradient does not lead to complex formation between the two enzymes as might be expected if phosphoribosyl anthranilate, the very labile product of the anthranilate phosphoribosyltransferase, were channelled to phosphoribosylanthranilate isomerase in vivo. The steady-state-kinetic behaviour of the enzyme suggests that catalysis involves a ternary enzyme-substrate complex, with KANTm = 1.6 microM, and KPRib-PPm = 22.4 microM. The enzyme has been used to generate phosphoribosylanthranilate in situ for kinetic studies of phosphoribosylanthranilate isomerase from Escherichia coli: KPRAm = 5 microM, kcat = 40 s-1.  相似文献   

18.
DNA polymerase I purified from both E. coli strain B, and from an overproducing E. coli stain lysogenized with a lambda pol A phage were analyzed for metal content. After gel filtration to remove loosely bound metals, DNA polymerase I from both strains contained less than or equal to 0.2 gm atoms Zn2+/mole enzyme and 0.09 to 0.7 Mg2+/mole enzyme. Substoichiometric amounts of Fe, Co, Ni (less than or equal to 0.2 gm atoms), and Mn (less than or equal to 0.1 gm atoms) were detected. Since the metal content does not correlate with enzymatic activity, we conclude that DNA polymerase I is not a metalloenzyme.  相似文献   

19.
A gene encoding cobalamin-dependent methionine synthase (EC 2.1.1.13) has been isolated from a plasmid library of Escherichia coli K-12 DNA by complementation to methionine prototrophy in an E. coli strain lacking both cobalamin-dependent and -independent methionine synthase activities (RK4536:metE, metHH). Maxicell expression of a series of plasmids containing deletions in the metH structural gene was employed to map the position and orientation of the gene on the cloned DNA fragment. A 6.3-kilobase EcoRI-SalI fragment containing the gene was cloned into the sequencing vector pGEM3B for double-stranded DNA sequencing; the MetH coding region consists of 3372 nucleotides. The enzyme was purified from an overproducing strain of E. coli harboring the recombinant plasmid, in which the level of methionine synthase was elevated 30- to 40-fold over wild-type E. coli. Recombinant enzyme is a protein of 123,640 molecular weight and has a turnover number of 1,450 min-1 in the standard assay. These values are to be compared with previously reported values of 133,000 for the molecular weight and 1,240-1,560 min-1 for the turnover number of the homogenous enzyme purified from a wild-type strain of E. coli B (Frasca, V., Banerjee, R. V., Dunham, W. R., Sands, R. H., and Matthews, R. G. (1988) Biochemistry 27, 8458-8465). Limited proteolysis of the native enzyme with trypsin resulted in loss of enzyme activity but retention of bound cobalamin on a peptide fragment of 28,000 molecular weight. This fragment has been shown to extend from residue 643 to residue 900 of the 1124-residue deduced amino acid sequence.  相似文献   

20.
Adenylate cyclase of Escherichia coli K12 has been purified 17,000-fold to near homogeneity from a 5-fold overproducing strain. One major band of Mr = 92,000 and several minor bands are seen on sodium dodecyl sulfate-polyacrylamide electrophoresis of the purest fractions. Identification of the enzyme with the 92,000-Da protein is based on the correlation of this band with activity when highly purified enzyme is eluted from ADP-sepharose columns. The native enzyme has a molecular weight of 95,000 determined by gel filtration, showing that the enzyme is active as a monomer. The purest enzyme has a specific activity of 700 nmol min-1 mg-1, indicating a turnover number of about 100 min-1. Our data indicate that there are only about 15 molecules of the enzyme in wild type cells of E. coli. In crude extracts, over 80% of the activity is soluble after centrifugation at 100,000 x g, indicating the enzyme is soluble or, at most, loosely membrane bound. The enzyme is only moderately stable in crude extracts and becomes more unstable as purification proceeds. Activity is stabilized by ATP, or at -20 degrees C as an ammonium sulfate precipitate or in 50% glycerol. The enzyme has an absolute requirement for divalent cations. Maximum activity with Mg2+ is reached at 30 mM. Mn2+ is a good substitute; Co2+ activates well at low concentrations but becomes inhibitory at high concentrations; and Ca2+ is a potent inhibitor in the presence of Mg2+. The isoelectric point of the enzyme is 6.1, and its pH optimum is 8.5. The enzyme is inhibited by its substrate, with a Km of about 1 mM and a Ki of about 1.5 mM, and is noncompetitively inhibited by PPi, ADP, GTP, and a number of other compounds. The data suggest that dissociation of PPi from the first enzyme-product complex is the rate-limiting step in the reaction. Activation of the enzyme, inferred to occur in vivo, could be produced by a postulated regulatory effector which speeds release of PPi from the enzyme-product complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号