首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Laminin inhibits human keratinocyte migration   总被引:13,自引:0,他引:13  
A quantitative migration assay for human keratinocytes was developed to assess the influence of extracellular matrix molecules on cell motility independently from their effect on cell proliferation. Fibronectin and collagen types I and IV markedly promoted keratinocyte migration, but albumin, type V collagen, and heparan sulfate proteoglycan had little effect. In contrast, laminin inhibited keratinocyte motility and dramatically reduced type IV collagen-induced migration in a concentration-dependent manner. Laminin was not toxic, since it had no apparent effect on morphology, growth, or ability of cells to be passaged. Laminin, a major component of the lamina lucida, may inhibit motility of keratinocytes in vivo. Absence of contact with laminin, which accompanies wounding, may facilitate motility and healing in the epidermis.  相似文献   

2.
Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins.  相似文献   

3.
In adult newts, basal epidermal cells adjacent to a fresh wound move toward the damaged area by migrating over the epidermal basement membrane. In an attempt to determine which basement membrane components mediate this migration, small pieces of glass coated with various natural matrices, purified proteins, or fragments of proteins were implanted into skin wounds such that epidermal cells attempting to form a wound epithelium would encounter the implants. Laminin derived from a cell line (M1536-B3) that produces no type IV collagen was inactive as a migration substrate. Migration on recombinant entactin was somewhat better than on laminin but was still only ~ 14% of that on type I collagen. M15 matrix, a laminin and entactin-containing product of M1536-B3 cells, was no better than entactin alone. Type IV collagen was an excellent substrate, producing slightly more migration than corresponding concentrations of type I collagen at nearly all concentrations tested. Migration on type IV lacking the NC1 domain was at least as good as on intact type IV. All the activity in type IV was present in a 95 kD fragment (al (IV)95) from the carboxy terminal two-thirds of the α1 chain. Approximately 60% of the activity on β1(IV)95 was obtained on implants coated with a 110 amino acid fragment of the α1 chain derived from the carboxy terminal half of α1(IV)95. Adding the synthetic peptide, arg-gly-asp-ser (RGDS) to the medium, biocked migration on fibronectin-coated implants but had no effect on implants coated with type IV, suggesting that migration on type IV involves different cell surface receptors than those mediating migration over fibronectin. Matrigel, a commercial product containing most basement membrane components, was a poor migration substrate. Thus if type IV mediates basal cell migration toward a wound in vivo, there may have to be some alterations in basement membrane structure to allow epidermal receptors to access type IV active site(s). © 1994 Wiley-Liss, Inc.  相似文献   

4.
The distribution of a novel laminin alpha5-chain in the basement membranes of the anterior segment of rat eye was studied. Frozen sections of embryonic day (E)16--17, post-natal day (P)2, 5, 10, 15 and 30 and adult rat eyes were immunostained for laminin chains alpha2, alpha5, beta1, beta2 and gamma1 and for laminin-5, as well as for EHS-laminin, to visualize all basement membranes. Laminin alpha5-, beta1- and gamma1-chain immunoreactivities were found in the basement membranes of the inner and outer layers of optic cup, lens epithelium, further corneal epithelium and skin of the eyelids in E16--17 rat eyes. In P2 and older rat eyes, laminin alpha5-, beta1- and gamma1-chains were all seen in the basement membranes of the corneal and conjunctival epithelium, Descemet's membrane, lens epithelium, ciliary processes, blood vessels and skin of the eyelids. There was a change in the expression pattern of laminin alpha5, beta1- and gamma1-chains in Descemet's membrane from the endothelial side of the membrane (P2--P15 eyes) to both sides of the membrane after P30. Immunoreactivity for laminin-5 was weak in the basement membrane of E16--17 epidermis, but strong in the basement membrane of corneal, conjunctival and eyelid epithelium in P2 and older rat eyes. Laminin alpha2- and beta2-chains were seen in conjunctival and uveal blood vessels in P15 and older rat eyes. The laminin beta2-chain emerged into the basement membrane of conjunctival epithelium in P30 and older rat eyes, suggesting a role for the laminin beta2-chain in the maturation of conjunctiva. The results suggest that laminin alpha5-chain, possibly in laminin-10 (alpha5beta1gamma1), is early and widely expressed in the basement membranes of developing and adult rat eye and, further, that laminin alpha5-chain is a major laminin alpha-chain, partly in coexpression with the alpha3-chain of laminin-5 in the basement membranes of the anterior segment of the eye in developing and adult rats. © 1998 Chapman & Hall  相似文献   

5.
Summary Pieces of coverslip glass coated with various proteins were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for the migrating wound epithelium. Laminin, a protein that has been implicated as an epithelial-specific adhesin, was a moderately good migration substrate. Type-IV collagen, fibrinogen and fibronectin, however, were significantly better. Fetuin, myoglobin, and casein all proved to be very poor substrates, allowing practically no migration. The inability of fetuin, myoglobin, and casein to support migration is further evidence that the considerable migration that occurs on collagen (Donaldson et al. 1982) fibrinogen and fibronectin (Donaldson and Mahan 1983) and the moderate migration on laminin, is a relatively specific response to these proteins and is therefore of special significance. The fact that laminin is a poorer migration substrate than collagen, fibrinogen or fibronectin suggests that the absence of cell surface laminin that has been associated with epithelial movement in several studies (Stanley et al. 1981; Clark et al. 1982; Madri and Stenn 1982; Gulati et al. 1983) may promote motility by allowing epithelial cells to interact directly with other extracellular macromolecules.  相似文献   

6.
Effective repair of a vascular injury depends on establishment of a stable fibrin patch at the injury site. Data presented in this study demonstrate that structural modification of fibrin occurs as a result of fibrin interaction with naturally occurring components of the vascular basement membrane and subendothelial structures. Of the basement membrane components, type IV collagen produces the greatest structural modification, generating thick fibrin fibers; a 3-fold increase in the fiber mass/length ratio occurs when type IV collagen is increased from 0 to 100 ng/ml. Laminin and dermatan sulfate decrease the fibrin fiber mass/length ratio resulting in thinner fibers. However, the overall effect of the basement membrane on fibrin is to increase the fibrin fiber diameter. Electrophoretic light scattering and the binding of type IV collagen by fibrinogen-Sepharose further establish the interaction between type IV collagen and fibrinogen. Incorporation of laminin with type IV collagen onto coated surfaces decreases the ability of type IV collagen to bind fibrinogen. These studies emphasize that the final fibrin structure is influenced by the milieu in which the clot is assembled.  相似文献   

7.
Sakimoto T  Kim TI  Ellenberg D  Fukai N  Jain S  Azar DT  Chang JH 《FEBS letters》2008,582(25-26):3674-3680
The significance of collagen XVIII in the regulation of corneal reinnervation remains largely unknown. We used whole-mount immunoconfocal microscopy to localize collagen XVIII to the nerve basement membrane of wild-type (WT) mouse corneas. Transmission electron microscopy showed corneal nerve disorganization in collagen XVIII knockout mice (col18a1(-/-)). Antibody 2H3-specific neurofilament colocalized with collagens XVIII and IV and laminin-2 in WT mouse corneas, but did not colocalize with collagen IV and laminin-2 in col18a1(-/-) mouse corneas. Following keratectomy, col18a1(-/-) mice displayed decreased corneal neurite extension compared to WT mice. Our data indicate that collagen XVIII may play an important role in corneal reinnervation after wounding.  相似文献   

8.
Summary Reepithelialization of artificial partial thickness wounds made in biopsies of human skin was determined after 3, 5, or 7 d of incubation, submerged or elevated to the air-liquid interface. The biopsies were reepithelialized within 5–7 d, with a more complete epidermal healing in wounds exposed to air. Both types of wounds showed similar time-course in deposition of basement membrane components, as detected by immunofluorescence labeling. Laminin and collagen type VII were deposited underneath the migrating tips, whereas collagen type IV was detected after reepithelialization. Markers of terminal differentiation showed a pattern close to normal in the air-liquid incubated wounds after reepithelialization. Involucrin was detected in the suprabasal regions of the migrating epidermis and thereafter in the upper half of neo-epidermis in the air-liquid incubated wound. Filaggrin could not be detected in the submerged wounds at any time during healing, whereas wounds exposed to air showed a well-differentiated epidermis by Day 7. Tritiated thymidine-incorporation indicated proliferation of epidermal and dermal cells during reepithelialization and a maintained viability, as shown by cultivation of endothelial- and fibroblast-like cells obtained from the dermis 7 d after wounding. Reepithelialization in this humanin vitro model is supported by a matrix close to normal with the possibility of extracellular influences and cell-cell interactions and, in addition, the technique is simple and reproducible. Therefore, we suggest this model for studies of regeneration in culture and as a complement toin vivo studies on epidermal healing.  相似文献   

9.
Laminin and type IV collagen were compared for the ability to promote aortic endothelial cell adhesion and directed migration in vitro. Substratum-adsorbed IV promoted aortic endothelial cell adhesion in a concentration dependent fashion attaining a maximum level 141-fold greater than controls within 30 min. Aortic endothelial cell adhesion to type IV collagen was not inhibited by high levels (10(-3) M) of arginyl-glycyl-aspartyl-serine. In contrast, adhesion of aortic endothelial cells on laminin was slower, attaining only 53% of the adhesion observed on type IV collagen by 90 min. Type IV collagen when added to the lower well of a Boyden chamber stimulated the directional migration of aortic endothelial cells in a concentration dependent manner with a maximal response 6.9-fold over control levels, whereas aortic endothelial cells did not migrate in response to laminin at any concentration (.01-2.0 X 10(-7) M). Triple helix-rich fragments of type IV collagen were nearly as active as intact type IV collagen in stimulating both adhesion and migration whereas the carboxy terminal globular domain was less active at promoting adhesion (36% of the adhesion promoted by intact type IV collagen) or migration. Importantly, aortic endothelial cells also migrate to substratum adsorbed gradients of type IV collagen suggesting that the mechanism of migration is haptotactic in nature. These results demonstrate that the aortic endothelial cell adhesion and migration is preferentially promoted by type IV collagen compared with laminin, and has a complex molecular basis which may be important in angiogenesis and large vessel repair.  相似文献   

10.
We investigated the effect of interleukin 6 (IL-6) on the migration of rabbit corneal epithelium in vitro and on the attachment of dissociated corneal epithelial cells to a fibronectin matrix. When corneal blocks were cultured with IL-6 for 24 hours, the length of the path of epithelial migration over exposed corneal stroma increased significantly (p less than 0.005 at the concentration of 10 ng/ml) in proportion to the concentrations of IL-6 (0.1-10.0 ng/ml). The addition of antiserum against fibronectin or of GRGDSP abolished the stimulatory effect of IL-6 on epithelial migration. When corneal epithelial cells were cultured with various concentrations of IL-6, suspended, and plated on wells coated with fibronectin (10 micrograms/ml), the number of cells attached to the wells increased in a dose-dependent manner. The presence of antibody against fibronectin or of GRGDSP during the attachment assay decreased the number of cells attached to the fibronectin matrix, regardless of the fact that the cells had been cultured with IL-6 or not. IL-6 stimulated the attachment of corneal epithelial cells to collagen type IV and to laminin matrices. However, the presence of GRGDSP did not affect the cell attachment to collagen type IV and to laminin. These findings strongly indicate that IL-6 stimulates epithelial migration in the cornea by a fibronectin-dependent mechanism, presumably the increased expression of fibronectin receptors.  相似文献   

11.

Purpose

This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding.

Methods

Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs.

Results

The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining.

Conclusions

Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9 following corneal wounding are the lacrimal gland and CALT. Other sources included stromal keratocytes and conjunctiva with goblet cells.  相似文献   

12.
We examined the role of individual integrins in promoting human keratinocyte migration. In short-term assays on collagen type I- or fibronectin-coated substrates, migration was blocked by antibody to the α2 integrin and the α5 integrin, respectively. Unexpectedly, antibodies to integrin α3 also significantly inhibited cell locomotion on both ligands. Time-course immunofluorescence staining revealed that keratinocyte migration was accompanied by deposition of endogenous laminin 5. Since α3β1 is a known receptor for this ligand, this observation suggested that migrating keratinocytes use freshly deposited laminin 5 in locomotion. Indeed, further investigation showed that anti-laminin 5 blocking antibodies effectively inhibited keratinocyte motility on both collagen and fibronectin substrates. Furthermore, cell migration on laminin 5-coated substrates was blocked by both anti-α3 and anti-laminin 5 antibodies. Laminin 5 did not appear important in the initial attachment of keratinocytes, since adhesion of cells to collagen type I- or fibronectin-coated surfaces was not blocked by antibody to α3 integrin or to laminin 5, but could be inhibited by antibody to α2 or α5, respectively. Using anin vitrowound assay, blocking antibodies to α3 integrin and to laminin 5 also blocked reepithelization of the denuded monolayer. These results show that α3β1 integrin plays an important role in the migration of keratinocytes via their interaction with laminin 5. Furthermore, they suggest that cell migration is dependent not only on exogenous ligands but, importantly, on endogenously secreted laminin 5. Finally, the data are consistent with our earlier finding that laminin 5 is the first extracellular matrix component to be expressed and deposited by migrating keratinocytes during wound healingin vivo[1].  相似文献   

13.
Interactions of basement membrane components   总被引:23,自引:0,他引:23  
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain (Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

14.
A 110-115-kD protein is present at levels 27-fold higher in migratory epithelium in the rat cornea than in stationary epithelium. This protein represents 2.7% of the total protein in migratory epithelium 6-h postabrasion wound and 0.1% of the total protein in stationary epithelium. Our findings demonstrate that this 110-115-kD protein is vinculin. In Western blots comparing proteins from migratory and control epithelium, antibody against vinculin cross-reacted with the 110-115-kD protein. Using immunoslot blots, vinculin was determined to be present at maximal levels 6 h postabrasion wound, at levels 22- and 8-fold higher than control at 18 and 48 h, respectively, returning to control levels 72 h postwounding. Vinculin was also localized by indirect immunohistochemistry in migrating corneal epithelium. 3-mm scrape wounds were allowed to heal in vivo for 20 h. In flat mounts of these whole wounded corneas, vinculin was localized as punctate spots in the leading edge of migrating epithelium. In cryostat sections, vinculin was localized as punctate spots along the basal cell membranes of the migrating sheet adjacent to the basement membrane and in patches between cells as well as diffusely throughout the cell. Only very diffuse localization with occasional punctate spots between adjacent superficial cells was present in stationary epithelium. The increased synthesis of vinculin during migration and the localization of vinculin at the leading edge of migratory epithelium suggest that vinculin may be involved in cell-cell and cell-substrate adhesion as the sheet of epithelium migrates to cover a wound.  相似文献   

15.
We have previously shown that the expression of a major 64-Kda keratin (K3) in corneal epithelium is site-related. It is found suprabasally in limbal epithelium, but uniformly (basal cells included) in central corneal epithelium. In the present study, we used a panel of antibodies against various components of corneal epithelial basement membrane to investigate a possible correlation between basement membrane heterogeneity and differential (basal vs. suprabasal) K3 keratin expression. One of these antibodies, AE27, stains human conjunctival basement membrane weakly, limbal basement membrane heterogeneously, and central corneal basement membrane strongly. Basal cells resting on basement membrane that stains strongly with AE27 tend to stain with monoclonal antibody AE5, which recognizes keratin K3. Basal cells on basement membrane staining weakly with AE27 tend not to stain with AE5. No such correlation exists between AE5 staining and type IV collagen, which is detectable immunohistochemically in conjunctival and limbal basement membrane, but not in corneal basement membrane overlying Bowman's layer. These results suggest that basement membrane of human corneal/conjunctival epithelium can be divided into at least three domains: the conjunctival basement membrane (type IV collagen-positive, AE27-weak), the limbal basement membrane (type IV collagen-positive, AE27-strong), and corneal basement membrane (type IV collagen-negative, AE27-strong). The results also raise the possibility that basement membrane heterogeneity may play a functional role in regulating keratin expression and other aspects of differentiation of corneal epithelium; more experiments are needed to test this hypothesis.  相似文献   

16.
Summary Type IV collagen is the basic structural component of all basement membranes (BM), and forms the backbone to which other BM components attach. We have found that in the centre of the adult human cornea the epithelium does not display a type IV collagen immunoreactive BM. In fetal corneas (14 and 22 weeks of gestation), however, the epithelial BM shows uninterrupted type IV collagen immunoreactivity. In similar experiments laminin immunoreactivity was observed in the entire corneal epithelial BM, in fetal as well as adult corneas. Ultrastructurally, a normal BM with a lamina lucida and a lamina densa can be observed in the conjunctiva. The adult corneal centre, however, shows epithelium without a lamina densa. Focal deposits of electron-dense material are observed in conjunction with hemidesmosomes and anchoring fibres.These observations indicate that in the development of the eye, the cornea is initially covered with an epithelium which attaches to a normal BM. Later on, however, the BM type IV collagen disappears from the corneal centre. Assuming that highly differentiated epithelium cannot produce a BM, this could be due to the high level of differentiation of central corneal epithelium, which is generated in the limbal proliferation zone. Alternatively, the acellular Bowman's layer might lack triggers to induce type IV collagen production by the epithelial cells.  相似文献   

17.
Binding of laminin to type IV collagen: a morphological study   总被引:18,自引:14,他引:4       下载免费PDF全文
A mixture of laminin and type IV collagen was analyzed by rotary shadowing using carbon/platinum and electron microscopy. Laminin was found to form distinct complexes with type IV collagen: one site of interaction is located 140 nm from the COOH-terminal, noncollagenous (NC1) domain and the other is located within the NH2-terminal region. The isolated NC1 fragment of type IV collagen does not appear to interact with laminin, while pepsin-treated type IV collagen, which lacks the NC1 domain, retains its ability to form complexes with laminin. Analysis of the laminin-type IV complexes indicates that laminin binds to type IV collagen via the globular regions of either of its four arms. This finding is supported by experiments using fragment P1 of laminin which lacks the globular regions and which does not bind to type IV collagen in a specific way. In addition, after heat-denaturation of laminin no specific binding is observed.  相似文献   

18.
Schwann cells, the myelin-forming cells of the peripheral nervous system, are surrounded by a basement membrane. Whether cultured rat Schwann cells synthesize the basement membrane-specific components, laminin and collagen type IV, and whether these components influence the adhesion, morphology, and growth of these cells have been investigated. Both laminin and collagen type IV were detected in the cytoplasm of Schwann cells by immunofluorescence. After ascorbate treatment, laminin and collagen type IV were both found in an extracellular fibrillar matrix bound to the Schwann cell surface. Laminin was further localized on the Schwann cell surface by electron microscopy using gold immunolabeling. Anti-laminin IgG-labeled gold particles were scattered over the cell surface, and linear rows of particles and small aggregates were found along the cell edges and at points of contact with other cells. When added to the culture medium, laminin acted as a potent adhesion factor, stimulating Schwann cell adhesion as much as eightfold above control levels on type IV collagen. In the presence of laminin, the cells became stellate and by 24 hr had extended long, thin processes. Laminin also stimulated cell growth in a dose-dependent manner and anti-laminin IgG completely inhibited cell attachment and growth in the absence of exogenous laminin. Thus, cultured Schwann cells synthesize laminin and collagen type IV, two major components of basement membrane, and laminin may trigger Schwann cell differentiation in vivo during early stages of axon-Schwann cell interaction before myelination.  相似文献   

19.
Implantation of the mouse embryo involves the invasion of the secondary trophoblast giant cells of the ectoplacental cone (EPC) into the uterine decidua. The mechanisms of this event are poorly understood. The putative substrate molecules found in the decidua which could support trophoblast invasion include laminin, fibronectin, and collagen type IV. EPCs dissected from Day 7.5 embryos were cultured on all three matrices. Galactosyltransferase (GalTase) was localized by immunolabeling on trophoblast cell surfaces when grown on laminin but not the other matrices. Perturbations of the enzyme:substrate complex with alpha-lactalbumin, uridine diphosphogalactose, anti-GalTase, and pregalactosylation of the matrix did not affect rates of EPC attachment. However, decreased rates of migration or altered morphologies of spreading cells were observed. Laminin, and not fibronectin or collagen type IV, could be galactosylated with both exogenous GalTase or EPC outgrowths. Digests of galactosylated laminin produced a glycoconjugate substrate with a molecular weight of less than 10K. The results suggest that invasive secondary trophoblast cells possess a GalTase-mediated migration system that is functional on laminin.  相似文献   

20.
 There is evidence that basement membrane components control differentiation of liver sinusoids and bile ducts. These processes occur in humans in the 9th gestational week (GW). Distribution of laminin, nidogen, and type IV collagen was studied during human liver development between the 6th and the 10th GW. Laminin and nidogen lined intrahepatic microvessels in the 6th and 7th GW decreasing in quantity at the beginning of the fetal period (9th–10th GW). Type IV collagen was detected in microvessels only from the 9th GW onward. In the early periportal matrix (9th–10th GW) laminin, nidogen, and type IV collagen were diffusely distributed. At these stages, basement membrane zones of larger portal vessels and of early bile ducts were also stained for all three glycoproteins. These results show that laminin and nidogen are localized in microvessels during early human liver development and decrease in concentration at the developmental stage during which microvessels become discontinuous. In contrast, type IV collagen is not present in early microvessels but occurs when laminin and nidogen disappear. The three glycoproteins occur together only in those areas of the developing liver in which, from the 9th GW onward, the differentiation of immature liver cells into biliary epithelium takes place. Accepted: 20 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号