首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sato K  Yamashita T  Imamoto Y  Shichida Y 《Biochemistry》2012,51(21):4300-4308
Visual pigments in rod and cone photoreceptor cells of vertebrate retinas are highly diversified photoreceptive proteins that consist of a protein moiety opsin and a light-absorbing chromophore 11-cis-retinal. There are four types of cone visual pigments and a single type of rod visual pigment. The reaction process of the rod visual pigment, rhodopsin, has been extensively investigated, whereas there have been few studies of cone visual pigments. Here we comprehensively investigated the reaction processes of cone visual pigments on a time scale of milliseconds to minutes, using flash photolysis equipment optimized for cone visual pigment photochemistry. We used chicken violet (L-group), chicken blue (M1-group), chicken green (M2-group), and monkey green (L-group) visual pigments as representatives of the respective groups of the phylogenetic tree of cone pigments. The S, M1, and M2 pigments showed the formation of a pH-dependent mixture of meta intermediates, similar to that formed from rhodopsin. Although monkey green (L-group) also formed a mixture of meta intermediates, pH dependency of meta intermediates was not observed. However, meta intermediates of monkey green became pH dependent when the chloride ion bound to the monkey green was replaced with a nitrate ion. These results strongly suggest that rhodopsin and S, M1, and M2 cone visual pigments share a molecular mechanism for activation, whereas the L-group pigment may have a special reaction mechanism involving the chloride-binding site.  相似文献   

2.
Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was approximately 11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 x 10(-7) s(-1), about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision.  相似文献   

3.
Vertebrate retinas have two types of photoreceptor cells, rods and cones, which contain visual pigments with different molecular properties. These pigments diverged from a common ancestor, and their difference in molecular properties originates from the difference in their amino acid residues. We previously reported that the difference in decay times of G protein-activating meta-II intermediates between the chicken rhodopsin and green-sensitive cone (chicken green) pigments is about 50 times. This difference only originates from the differences of two residues at positions 122 and 189 (Kuwayama, S., Imai, H., Hirano, T., Terakita, A., and Shichida, Y. (2002) Biochemistry 41, 15245-15252). Here we show that the meta-III intermediates exhibit about 700 times difference in decay times between the two pigments, and the faster decay in chicken green can be converted to the slower decay in rhodopsin by replacing the residues in chicken green with the corresponding rhodopsin residues. However, the inverse directional conversion did not occur when the two residues in rhodopsin were replaced by those of chicken green. Analysis using chimerical mutants derived from these pigments has demonstrated that amino acid residues responsible for the slow rhodopsin meta-III decay are situated at several positions throughout the C-terminal half of rhodopsin. Considering that rhodopsins evolved from cone pigments, it has been suggested that the molecular properties of rhodopsin have been optimized by mutations at several positions, and the chicken green mutants at two positions could be rhodopsin-like pigments transiently produced in the course of molecular evolution.  相似文献   

4.
Cone visual pigments   总被引:1,自引:0,他引:1  
Cone visual pigments are visual opsins that are present in vertebrate cone photoreceptor cells and act as photoreceptor molecules responsible for photopic vision. Like the rod visual pigment rhodopsin, which is responsible for scotopic vision, cone visual pigments contain the chromophore 11-cis-retinal, which undergoes cis–trans isomerization resulting in the induction of conformational changes of the protein moiety to form a G protein-activating state. There are multiple types of cone visual pigments with different absorption maxima, which are the molecular basis of color discrimination in animals. Cone visual pigments form a phylogenetic sister group with non-visual opsin groups such as pinopsin, VA opsin, parapinopsin and parietopsin groups. Cone visual pigments diverged into four groups with different absorption maxima, and the rhodopsin group diverged from one of the four groups of cone visual pigments. The photochemical behavior of cone visual pigments is similar to that of pinopsin but considerably different from those of other non-visual opsins. G protein activation efficiency of cone visual pigments is also comparable to that of pinopsin but higher than that of the other non-visual opsins. Recent measurements with sufficient time-resolution demonstrated that G protein activation efficiency of cone visual pigments is lower than that of rhodopsin, which is one of the molecular bases for the lower amplification of cones compared to rods. In this review, the uniqueness of cone visual pigments is shown by comparison of their molecular properties with those of non-visual opsins and rhodopsin. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

5.
Phosphorylation of iodopsin, chicken red-sensitive cone visual pigment   总被引:1,自引:0,他引:1  
The amino acid sequence has been determined for the carboxyl-terminal 41 amino acids of chicken red-sensitive cone pigment, iodopsin. This sequence is distinct from but structurally homologous to that of other visual pigments. It contains a region rich in the hydroxy amino acids serine and threonine. In the related rod cell visual pigment, rhodopsin, such serines and threonines have previously been identified as sites for phosphorylation by rhodopsin kinase. Phosphorylation of photolyzed rhodopsin serves to terminate its ability to function in visual transduction as an activator of G-protein. We have purified and reconstituted both chicken rhodopsin and chicken iodopsin and shown them to be phosphorylated by bovine rhodopsin kinase. Chicken iodopsin has a Km and Vmax similar to but distinguishably different from that for bovine rhodopsin. These results, in conjunction with other data, suggest that visual pigments in cone cells, upon absorption of light, undergo functional processes similar to those of the visual pigments in rod cells.  相似文献   

6.
Das J  Crouch RK  Ma JX  Oprian DD  Kono M 《Biochemistry》2004,43(18):5532-5538
In rhodopsin, the 9-methyl group of retinal has previously been identified as being critical in linking the ligand isomerization with the subsequent protein conformational changes that result in the activation of its G protein, transducin. Here, we report studies on the role of this methyl group in the salamander rod and cone pigments. Pigments were generated by combining proteins expressed in COS cells with 11-cis 9-demethyl retinal, where the 9-methyl group on the polyene chain has been deleted. The absorption spectra of all pigments were blue-shifted. The red cone and blue cone/green rod pigments were unstable to hydroxylamine; whereas, the rhodopsin and UV cone pigments were stable. The lack of the 9-methyl group of the chromophore did not affect the ability of the red cone and blue cone/green rod pigments to activate transducin. On the other hand, with the rhodopsin and UV cone pigments, activation was diminished. Interestingly, the red cone pigment containing the retinal analogue remained active longer than the native pigment. Thus, the 9-methyl group of retinal is not important in the activation pathway of the red cone and blue cone/green rod pigments. However, for the red cone pigment, the 9-methyl group of retinal appears to be critical in the deactivation pathway.  相似文献   

7.
Chicken pineal pinopsin is the first example of extra-retinal opsins, but little is known about its molecular properties as compared with retinal rod and cone opsins. For characterization of extra-retinal photon signaling, we have developed an overexpression system providing a sufficient amount of purified pinopsin. The recombinant pinopsin, together with similarly prepared chicken rhodopsin and green-sensitive cone pigment, was subjected to photochemical and biochemical analyses by using low-temperature spectroscopy and the transducin activation assay. At liquid nitrogen temperature (-196 degrees C), we detected two kinds of photoproducts, bathopinopsin and isopinopsin, having their absorption maxima (lambda(max)) at 527 and approximately 440 nm, respectively, and we observed complete photoreversibility among pinopsin, bathopinopsin, and isopinopsin. A close parallel of the photoreversibility to the rhodopsin system strongly suggests that light absorbed by pinopsin triggers the initial event of cis-trans isomerization of the 11-cis-retinylidene chromophore. Upon warming, bathopinopsin decayed through a series of photobleaching intermediates: lumipinopsin (lambda(max) 461 nm), metapinopsin I (460 nm), metapinopsin II (385 nm), and metapinopsin III (460 nm). Biochemical and kinetic analyses showed that metapinopsin II is a physiologically important photoproduct activating transducin. Detailed kinetic analyses revealed that the formation of metapinopsin II is as fast as that of a chicken cone pigment, green, but that the decay process of metapinopsin II is as slow as that of the rod pigment, rhodopsin. These results indicate that pinopsin is a new type of pigment with a chimeric nature between rod and cone visual pigments in terms of the thermal behaviors of the meta II intermediate. Such a long-lived active state of pinopsin may play a role in the pineal-specific phototransduction process.  相似文献   

8.
Kuwayama S  Imai H  Hirano T  Terakita A  Shichida Y 《Biochemistry》2002,41(51):15245-15252
To identify the amino acid residue(s) responsible for the difference in the molecular properties between rod and cone pigments, we have prepared chicken green mutants where each of the residues (Val77, Gly144, and Pro189) completely conserved in the cone pigments was replaced with the residue in the rod pigment rhodopsin. Among the mutants, the P189I mutant showed an expression level in cultured HEK293 cells and a thermal stability higher than did the wild-type chicken green. The mutation caused a reduced decay rate of the meta II intermediate, while the mutation of the wild-type chicken rhodopsin at position 189 (I189P) resulted in an increased decay rate. The additional mutation at position 122, the previously reported site where the amino acid residue is one of the determinants of the meta II decay rate, converted the meta II decay rate into that observed in the wild-type chicken rhodopsin. These results suggest that the difference in the meta II decay rate between the chicken green and rhodopsin is due to the difference in the amino acid residues at positions 189 and 122. The completely conserved nature of proline at position 189 could provide a clue to the molecular evolution of the pigments.  相似文献   

9.
Chen MH  Kuemmel C  Birge RR  Knox BE 《Biochemistry》2012,51(20):4117-4125
As part of the visual cycle, the retinal chromophore in both rod and cone visual pigments undergoes reversible Schiff base hydrolysis and dissociation following photobleaching. We characterized light-activated release of retinal from a short-wavelength-sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluorescence spectroscopy. The half-time (t(1/2)) of release of retinal from VCOP was 7.1 s, 250-fold faster than that of rhodopsin. VCOP exhibited pH-dependent release kinetics, with the t(1/2) decreasing from 23 to 4 s with the pH decreasing from 4.1 to 8, respectively. However, the Arrhenius activation energy (E(a)) for VCOP derived from kinetic measurements between 4 and 20 °C was 17.4 kcal/mol, similar to the value of 18.5 kcal/mol for rhodopsin. There was a small kinetic isotope (D(2)O) effect in VCOP, but this effect was smaller than that observed in rhodopsin. Mutation of the primary Schiff base counterion (VCOP(D108A)) produced a pigment with an unprotonated chromophore (λ(max) = 360 nm) and dramatically slowed (t(1/2) ~ 6.8 min) light-dependent retinal release. Using homology modeling, a VCOP mutant with two substitutions (S85D and D108A) was designed to move the counterion one α-helical turn into the transmembrane region from the native position. This double mutant had a UV-visible absorption spectrum consistent with a protonated Schiff base (λ(max) = 420 nm). Moreover, the VCOP(S85D/D108A) mutant had retinal release kinetics (t(1/2) = 7 s) and an E(a) (18 kcal/mol) similar to those of the native pigment exhibiting no pH dependence. By contrast, the single mutant VCOP(S85D) had an ~3-fold decreased retinal release rate compared to that of the native pigment. Photoactivated VCOP(D108A) had kinetics comparable to those of a rhodopsin counterion mutant, Rho(E113Q), both requiring hydroxylamine to fully release retinal. These results demonstrate that the primary counterion of cone visual pigments is necessary for efficient Schiff base hydrolysis. We discuss how the large differences in retinal release rates between rod and cone visual pigments arise, not from inherent differences in the rate of Schiff base hydrolysis but rather from differences in the properties of noncovalent binding of the retinal chromophore to the protein.  相似文献   

10.
To investigate the local structure that causes the differences in molecular properties between rod and cone visual pigments, we have measured the difference infrared spectra between chicken green and its photoproduct at 77 K and compared them with those from bovine and chicken rhodopsins. In contrast to the similarity of the vibrational bands of the chromophore, those of the protein part were notably different between chicken green and the rhodopsins. Like the rhodopsins, chicken green has an aspartic acid at position 83 (D83) but exhibited no signals due to the protonated carboxyl of D83 in the C=O stretching region, suggesting that the molecular contact between D83 and G120 through water molecule evidenced in bovine rhodopsin is absent in chicken green. A pair of positive and negative bands due to the peptide backbone (amide I) was prominent in chicken green, while the rhodopsins exhibited only small bands in this region. Furthermore, chicken green exhibited characteristic paired bands around 1480 cm(-1), which were identified as the imide bands of P189 using site-directed mutagenesis. P189, situated in the putative second extracellular loop, is conserved in all the known cone visual pigments but not in rhodopsins. Thus, some region of the second extracellular loop including P189 is situated near the chromophore and changes its environment upon formation of the batho-intermediate. The results noted above indicate that differences in the protein parts between chicken green and the rhodopsins alter the changes seen in the protein upon photoisomerization of the chromophore. Some of these changes appear to be the pathway from the chromophore to cytoplasmic surface of the pigment and thus could affect the activation process of transducin.  相似文献   

11.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.  相似文献   

12.
A visual pigment is composed of retinal bound to its apoprotein by a protonated Schiff base linkage. Light isomerizes the chromophore and eventually causes the deprotonation of this Schiff base linkage at the meta II stage of the bleaching cycle. The meta II intermediate of the visual pigment is the active form of the pigment that binds to and activates the G protein transducin, starting the visual cascade. The deprotonation of the Schiff base is mandatory for the formation of meta II intermediate. We studied the proton binding affinity, pKa, of the Schiff base of both octopus rhodopsin and the gecko cone pigment P521 by spectral titration. Several fluorinated retinal analogs have strong electron withdrawing character around the Schiff base region and lower the Schiff base pKa in model compounds. We regenerated octopus and gecko visual pigments with these fluorinated and other retinal analogs. Experiments on these artificial pigments showed that the spectral changes seen upon raising the pH indeed reflected the pKa of the Schiff base and not the denaturation of the pigment or the deprotonation of some other group in the pigment. The Schiff base pKa is 10.4 for octopus rhodopsin and 9.9 for the gecko cone pigment. We also showed that although the removal of Cl- ions causes considerable blue-shift in the gecko cone pigment P521, it affects the Schiff base pKa very little, indicating that the lambda max of visual pigment and its Schiff base pKa are not tightly coupled.  相似文献   

13.
Amora TL  Ramos LS  Galan JF  Birge RR 《Biochemistry》2008,47(16):4614-4620
Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11- cis-retinal) or A2 (11- cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6- s- trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6- s- cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6- s- trans geometry red shifts M/LWS A1 pigments by approximately 1500 cm (-1) ( approximately 50 nm) and A2 pigments by approximately 2700 cm (-1) ( approximately 100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6- s- trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6- s- trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites.  相似文献   

14.
Phosphorylation of G-protein-coupled receptors (GPCRs) is a required step in signal deactivation. Rhodopsin, a prototypical GPCR, exhibits high gain phosphorylation in vitro whereby a hundred-fold molar excess of phosphates are incorporated into the rhodopsin pool per molecule of activated rhodopsin. The extent by which high gain phosphorylation occurs in the intact mammalian photoreceptor cell, and the molecular mechanism underlying this reaction in vivo, is not known. Trans-phosphorylation is a mechanism proposed for high gain phosphorylation, whereby rhodopsin kinase, upon phosphorylating the activated receptor, continues to phosphorylate nearby nonactivated rhodopsin. We used two different transgenic mouse models to test whether trans-phosphorylation occurs in the intact photoreceptor cell. The first transgenic model expressed a murine cone pigment, S-opsin, together with the endogenous rhodopsin in the rod cell. We showed that selective stimulation of rhodopsin also led to phosphorylation of S-opsin. The second mouse model expressed the constitutively active human opsin mutant K296E. K296E, in the arrestin-/- background, also led to phosphorylation of endogenous mouse rhodopsin in the dark-adapted retina. Both mouse models provide strong support of trans-phosphorylation as an underlying mechanism of high gain phosphorylation, and provide evidence that a substantial fraction of nonactivated visual pigments becomes phosphorylated through this mechanism. Because activated, phosphorylated receptors exhibit decreased catalytic activity, our results suggest that dephosphorylation would be an important step in the full recovery of visual sensitivity during dark adaptation. These results may also have implications for other GPCR signaling pathways.  相似文献   

15.
Activation of the visual pigment by light in rod and cone photoreceptors initiates our visual perception. As a result, the signaling properties of visual pigments, consisting of a protein, opsin, and a chromophore, 11-cis-retinal, play a key role in shaping the light responses of photoreceptors. The combination of pharmacological, physiological, and genetic tools has been a powerful approach advancing our understanding of the interactions between opsin and chromophore and how they affect the function of visual pigments. The signaling properties of the visual pigments modulate many aspects of the function of rods and cones, producing their unique physiological properties.  相似文献   

16.
Most vertebrate retinas contain two types of photoreceptor cells, rods and cones, which show different photoresponses to mediate scotopic and photopic vision, respectively. These cells contain different types of visual pigments, rhodopsin and cone visual pigments, respectively, but little is known about the molecular properties of cone visual pigments under physiological conditions, making it difficult to link the molecular properties of rhodopsin and cone visual pigments with the differences in photoresponse between rods and cones. Here we prepared bovine and mouse rhodopsin (bvRh and mRh) and chicken and mouse green-sensitive cone visual pigments (cG and mG) embedded in nanodiscs and applied time-resolved fluorescence spectroscopy to compare their Gt activation efficiencies. Rhodopsin exhibited greater Gt activation efficiencies than cone visual pigments. Especially, the Gt activation efficiency of mRh was about 2.5-fold greater than that of mG at 37 °C, which is consistent with our previous electrophysiological data of knock-in mice. Although the active state (Meta-II) was in equilibrium with inactive states (Meta-I and Meta-III), quantitative determination of Meta-II in the equilibrium showed that the Gt activation efficiency per Meta-II of bvRh was also greater than those of cG and mG. These results indicated that efficient Gt activation by rhodopsin, resulting from an optimized active state of rhodopsin, is one of the causes of the high amplification efficiency of rods.  相似文献   

17.
The role of the extracellular loop region of a short-wavelength sensitive pigment, Xenopus violet cone opsin, is investigated via computational modeling, mutagenesis, and spectroscopy. The computational models predict a complex H-bonding network that stabilizes and connects the EC2-EC3 loop and the N-terminus. Mutations that are predicted to disrupt the H-bonding network are shown to produce visual pigments that do not stably bind chromophore and exhibit properties of a misfolded protein. The potential role of a disulfide bond between two conserved Cys residues, Cys(105) in TM3 and Cys(182) in EC2, is necessary for proper folding and trafficking in VCOP. Lastly, certain residues in the EC2 loop are predicted to stabilize the formation of two antiparallel β-strands joined by a hairpin turn, which interact with the chromophore via H-bonding or van der Waals interactions. Mutations of conserved residues result in a decrease in the level of chromophore binding. These results demonstrate that the extracellular loops are crucial for the formation of this cone visual pigment. Moreover, there are significant differences in the structure and function of this region in VCOP compared to that in rhodopsin.  相似文献   

18.
Fasick JI  Applebury ML  Oprian DD 《Biochemistry》2002,41(21):6860-6865
The wild-type mouse ultraviolet (UV) and bovine blue cone visual pigments have absorption maxima of 358 and 438 nm, respectively, while sharing 87% amino acid identity. To determine the molecular basis underlying the 80 nm spectral shift between these pigments, we selected several amino acids in helices II and III for site-directed mutagenesis. These amino acids included: (1) those that differ between mouse UV and bovine blue; (2) the conserved counterion, Glu113; and (3) Ser90, which is involved in wavelength modulation in avian short-wavelength sensitive cone pigments. These studies resulted in the identification of a single amino acid substitution at position 86 responsible for the majority of the spectral shift between the mouse UV and bovine blue cone pigments. This is the first time that this amino acid by itself has been shown to play a major role in the spectral tuning of the SWS1 cone pigments. A single amino acid substitution appears to be the dominant factor by which the majority of mammalian short-wavelength sensitive cone pigments have shifted their absorption maxima from the UV to the visible regions of the spectrum. Studies investigating the role of the conserved counterion Glu113 suggest that the bovine and mouse SWS1 pigments result from a protonated and unprotonated Schiff base chromophore, respectively.  相似文献   

19.
The crystal structure of rhodopsin has provided the first three-dimensional molecular model for a G-protein-coupled receptor (GPCR). Alignment of the molecular model from the crystallographic structure with the helical axes seen in cryo-electron microscopic (cryo-EM) studies provides an opportunity to investigate the properties of the molecule as a function of orientation and location within the membrane. In addition, the structure provides a starting point for modeling and rational experimental approaches of the cone pigments, the GPCRs in cone cells responsible for color vision. Homology models of the cone pigments provide a means of understanding the roles of amino acid sequence differences that shift the absorption maximum of the retinal chromophore in the environments of different opsins.  相似文献   

20.
The crystal structure of rhodopsin has provided the first three-dimensional molecular model for a G-protein-coupled receptor (GPCR). Alignment of the molecular model from the crystallographic structure with the helical axes seen in cryo-electron microscopic (cryo-EM) studies provides an opportunity to investigate the properties of the molecule as a function of orientation and location within the membrane. In addition, the structure provides a starting point for modeling and rational experimental approaches of the cone pigments, the GPCRs in cone cells responsible for color vision. Homology models of the cone pigments provide a means of understanding the roles of amino acid sequence differences that shift the absorption maximum of the retinal chromophore in the environments of different opsins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号