首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative stress and arachidonic acid mobilization   总被引:2,自引:0,他引:2  
Reactive oxygen species are known to contribute to tissue damage during injury and inflammation. However, these species can also be sensed by the cells and trigger intracellular signaling cascades. This review examines recent evidence on the involvement of reactive oxygen species in lipid signaling. Attention is focused on activation of phospholipase A2s, enzymes whose action on membrane phospholipids can also render molecules with opposite effects on cells. The participation of Ca2+-dependent and Ca2+-independent phospholipase A2s in arachidonic acid mobilization from phospholipids is discussed, with particular attention to the interplay between cytosolic and secreted Ca2+-dependent forms. The involvement of alternative routes for arachidonic acid mobilization under oxidative stress is also considered.  相似文献   

2.
Smooth muscle (SM) is essential to all aspects of human physiology and, therefore, key to the maintenance of life. Ion channels expressed within SM cells regulate the membrane potential, intracellular Ca2+ concentration, and contractility of SM. Excitatory ion channels function to depolarize the membrane potential. These include nonselective cation channels that allow Na+ and Ca2+ to permeate into SM cells. The nonselective cation channel family includes tonically active channels (Icat), as well as channels activated by agonists, pressure-stretch, and intracellular Ca2+ store depletion. Cl--selective channels, activated by intracellular Ca2+ or stretch, also mediate SM depolarization. Plasma membrane depolarization in SM activates voltage-dependent Ca2+ channels that demonstrate a high Ca2+ selectivity and provide influx of contractile Ca2+. Ca2+ is also released from SM intracellular Ca2+ stores of the sarcoplasmic reticulum (SR) through ryanodine and inositol trisphosphate receptor Ca2+ channels. This is part of a negative feedback mechanism limiting contraction that occurs by the Ca2+-dependent activation of large-conductance K+ channels, which hyper polarize the plasma membrane. Unlike the well-defined contractile role of SR-released Ca2+ in skeletal and cardiac muscle, the literature suggests that in SM Ca2+ released from the SR functions to limit contractility. Depolarization-activated K+ chan nels, ATP-sensitive K+ channels, and inward rectifier K+ channels also hyperpolarize SM, favouring relaxation. The expression pattern, density, and biophysical properties of ion channels vary among SM types and are key determinants of electrical activity, contractility, and SM function.  相似文献   

3.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types, particularly of hemopoietic origin, store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. However, little is known about the downstream consequences of CRAC channel activation. Here, we report that Ca2+ entry through CRAC channels stimulates arachidonic acid production, whereas Ca2+ release from the stores is ineffective even though the latter evokes a robust intracellular Ca2+ signal. We find that arachidonic acid released by Ca2+ entering through CRAC channels is used to synthesize the potent paracrine proinflammatory signal leukotriene C4 (LTC4). Both pharmacological inhibitors of CRAC channels and mitochondrial depolarization, which impairs CRAC channel activity, suppress arachidonic acid release and LTC4 secretion. Thus, arachidonic acid release is preferentially stimulated by elevated subplasmalemmal Ca2+ levels due to open CRAC channels, suggesting that the enzyme is located close to the CRAC channels. Our results also identify a novel role for CRAC channels, namely the activation of a downstream signal transduction pathway resulting in the secretion of LTC4. Finally, mitochondria are key determinants of the generation of both intracellular (arachidonic acid) and paracrine (LTC4) signals through their effects on CRAC channel activity.  相似文献   

4.
In pancreatic acinar cells analysis of the propagation speed of secretagogue-evoked Ca2+ waves can be used to examine coupling of hormone receptors to intracellular signal cascades that cause activation of protein kinase C or production of arachidonic acid (AA). In the present study we have investigated the role of cytosolic phospholipase A2 (cPLA2) and AA in acetylcholine (ACh)- and bombesin-induced Ca2+ signaling. Inhibition of cPLA2 caused acceleration of ACh-induced Ca2+ waves, whereas bombesin-evoked Ca2+ waves were unaffected. When enzymatic metabolization of AA was prevented with the cyclooxygenase inhibitor indomethacin or the lipoxygenase inhibitor nordihydroguaiaretic acid, ACh-induced Ca2+ waves were slowed down. Agonist-induced activation of cPLA2 involves mitogen-activated protein kinase (MAPK) activation. An increase in phosphorylation of p38(MAPK) and p42/44(MAPK) within 10 s after stimulation could be demonstrated for ACh but was absent for bombesin. Rapid phosphorylation of p38(MAPK) and p42/44(MAPK) could also be observed in the presence of cholecystokinin (CCK), which also causes activation of cPLA2. ACh-and CCK-induced Ca2+ waves were slowed down when p38(MAPK) was inhibited with SB 203580, whereas inhibition of p42/44(MAPK) with PD 98059 caused acceleration of ACh- and CCK-induced Ca2+ waves. The spreading of bombesin-evoked Ca2+ waves was affected neither by PD 98059 nor by SB 203580. Our data indicate that in mouse pancreatic acinar cells both ACh and CCK receptors couple to the cPLA2 pathway. cPLA2 activation occurs within 1-2 s after hormone application and is promoted by p42/44(MAPK) and inhibited by p38(MAPK). Furthermore, the data demonstrate that secondary (Ca2+-induced) Ca2+ release, which supports Ca2+ wave spreading, is inhibited by AA itself and not by a metabolite of AA.  相似文献   

5.
Arachidonic acid, one of the major unsaturated fatty acids released during cell stimulation, participates in the signaling necessary for activation of different enzymes, including protein kinase C (PKC). Here, we demonstrate that arachidonic acid is a direct activator of PKCalpha, but needs the cooperation of Ca(2+) to exert its function. By using several mutants of the C2 and C1 domains, we were able to determine the molecular mechanism of this activation. More specifically, site-directed mutagenesis in key residues found in the C2 domain showed that the Ca(2+)-binding region was essential for the arachidonic acid-dependent localization and activation of PKCalpha. However, the lysine-rich cluster, also located in the C2 domain, played no relevant role in either the membrane localization or activation of the enzyme. Moreover, site-directed mutagenesis in key residues placed in the C1A and C1B subdomains, which are responsible for the diacylglycerol/phorbil ester interaction, demonstrated that the C1A subdomain was involved in the membrane localization and activation mechanism. Taken together, these data suggest a very precise mechanism for PKCalpha activation by arachidonic acid, involving a sequential model of activation in which an increase in intracytosolic Ca(2+) leads to the interaction of arachidonic acid with the Ca(2+)-binding region; only after this step, does the C1A subdomain interact with arachidonic acid, leading to full activation of the enzyme.  相似文献   

6.
During an agonist stimulation of endothelial cells, the sustained Ca2+ entry occurring through store-operated channels has been shown to significantly contribute to smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). However, the mechanisms linking Ca2+ stores depletion to the opening of such channels are still elusive. We have used Ca2+ and tension measurements in intact aortic strips to investigate the role of the Ca2+-independent isoform of phospholipase A2 (iPLA2) in endothelial store-operated Ca2+ entry and endothelium-dependent relaxation of smooth muscle. We provide evidence that iPLA2 is involved in the activation of endothelial store-operated Ca2+ entry when Ca2+ stores are artificially depleted. We also show that the sustained store-operated Ca2+ entry occurring during physiological stimulation of endothelial cells with the circulating hormone ATP is due to iPLA2 activation and significantly contributes to the amplitude and duration of ATP-induced endothelium-dependent relaxation. Consistently, both iPLA2 metabolites arachidonic acid and lysophosphatidylcholine were found to stimulate Ca2+ entry in native endothelial cells. However, only the latter triggered endothelium-dependent relaxation through NO release, suggesting that lysophosphatidylcholine produced by iPLA2 upon Ca2+ stores depletion may act as an intracellular messenger that stimulates store-operated Ca2+ entry and subsequent NO production in endothelial cells. Finally, we found that ACh-induced endothelium relaxation also depends on iPLA2 activation, suggesting that the iPLA2-dependent control of endothelial store-operated Ca2+ entry is a key physiological mechanism regulating arterial tone.  相似文献   

7.
The properties of the Ca2+ channel induced by a calmodulin inhibitor in Ehrlich ascites tumor cells were investigated using fluorescent indicators Indo-1 and chlortetracycline. The inhibitor of calmodulin calmidazolium (R24571) in concentrations of 1-2 microM induces a short-term Ca2+ entry and a pulse-like ATP secretion. Repeated addition of R24571 also causes a transient Ca2+ signal. Ca2+ channels induced by R24571 are permeable for Mn2+. Ca2+ entry does not depend on endoplasmic reticulum depletion by thapsigargin, ATP, or ionomycin and is suppressed by nordihydroguaretic acid (EC50 = 6.7 microM), quercetin (EC50 = 1.5 microM), dihydroquercetin (EC50 = 17 microM), arachidonic acid (AA) (EC50 = 8.6 microM), and suramin (EC50 = 0.25 +/- 0.05 MM), and weakly depends on temperature in the range of 18 - 37 degrees C. The apparent activation constant for R24571 and the Hill coefficient are 2.5 +/- 0.2 and 4 +/- 0.3 microM, respectively. The products of arachidonic acid oxidation are neither activators nor inhibitors of these channels. The inhibitory effect of nordihydroguaretic acid is indirect and is conceivably caused by the accumulation of arachidonic acid due to suppression of its lipoxygenase-catalyzed oxidation at phospholipase A2 activation. The maximal level of about 1.3 microM in the dependence of Ca2+ signal amplitude on R24571 concentration points to possible inhibition of the channel by increased Ca2+ concentration in the cytosol. The weak dependence on temperature implies that the channel is highly permeable, the chain of enzymic processes is not involved in Ca2+ entry activation, and the mutual compensation of processes with opposite contributions is possible. Using chlortetracycline fluorescence, we have shown in model experiments on calmodulin solution that Ca2+ induces cooperatively a conformational transition of calmodulin with the exposure of a hydrophobic chlortetracycline-Ca(2+)-binding site. The interaction of R24571 with the CaM-Ca2+ complex results in quenching of fluorescence to its level in water, which is interpreted as the elimination of the availability of calmodulin hydrophobic site for chlortetracycline-Ca+. Nordihydroguaretic acid, quercetin, and dihydroquercetin, but not suramin, also interact with calmodulin, but this does not result in the complete closing of its hydrophobic site. It is supposed that the activation of the Ca2+ channel occurs owing to the activation of calmodulin-dependent phospholipase A2 by R24571, which leads to the formation of a low-molecular short-lived secondary messenger, or because of the interaction of R24571 with calmodulin, which directly inhibits the channel. The termination of Ca2+ entry is probably due to the inhibition of phospholipase A2 and/or of the channel at increased concentrations of arachidonic acid and Ca2+.  相似文献   

8.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

9.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

10.
The role of external calcium in platelet-activating factor- and zymosan-stimulated arachidonic acid release from mouse macrophages was investigated. Deprivation of external Ca2+ led to strong inhibition of receptor-mediated arachidonic acid release, which was completely restored when Ca2+ was added to the incubation medium. When arachidonic acid release was examined in Ca(2+)-depleted cells, the response took place only in presence of external Ca2+. Verapamil, a voltage-dependent Ca2+ channel blocker, nearly abolished arachidonic acid release in response to both platelet-activating factor and zymosan. These results suggest that extracellular Ca2+ influx is functionally linked to arachidonic acid release and hence to phospholipase A2 activation in mouse peritoneal macrophages.  相似文献   

11.
Cytosolic group IV phospholipase A2 (cPLA2) is a ubiquitously expressed enzyme with key roles in intracellular signaling. The current paradigm for activation of cPLA2 by stimuli proposes that both an increase in intracellular calcium and mitogen-activated protein kinase-mediated phosphorylation occur together to fully activate the enzyme. Calcium is currently thought to be needed for translocation of the cPLA2 to the membrane via a C2 domain, whereas the role of cPLA2 phosphorylation is less clearly defined. Herein, we report that brief exposure of P388D1 macrophages to UV radiation results in a rapid, cPLA2-mediated arachidonic acid mobilization, without increases in intracellular calcium. Thus, increased Ca2+ availability is a dispensable signal for cPLA2 activation, which suggests the existence of alternative mechanisms for the enzyme to efficiently interact with membranes. Our previous in vitro data suggested the importance of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) in the association of cPLA2 to model membranes and hence in the regulation of cPLA2 activity. Experiments described herein show that PtdInsP2 also serves a similar role in vivo. Moreover, inhibition of PtdInsP2 formation during activation conditions leads to inhibition of the cPLA2-mediated arachidonic acid mobilization. These results suggest that cellular PtdInsP2 levels are involved in the regulation of group IV cPLA2 activation.  相似文献   

12.
Only tetraprenol (n = 4), among the (n)-polyprenols studied, induced activation of rabbit platelets. Tetraprenol-induced responses, including platelet aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release, were greatly inhibited by a thromboxane A2 (TXA2) receptor antagonist and a cyclooxygenase inhibitor, indicating an essential role for endogenously produced TXA2. The TXA2-mimetic agonist U46619 induced platelet aggregation, Ca2+ mobilization and phospholipase C action but did not induce arachidonic acid release. These results suggest that arachidonic acid is not released via phospholipase C but by phospholipase A2, and this is also supported by the finding that phospholipase C action was inhibited by depletion of extracellular Ca2+, while arachidonic acid release was not. Full arachidonic acid release was found to be induced by the synergistic action of U46619 and tetraprenol. Therefore, the initial, most essential response induced by tetraprenol is a small arachidonic acid release by phospholipase A2, which results in initial TXA2 formation. Further action of phospholipase C as well as Ca2+ mobilization and aggregation were induced by the initially formed TXA2 while further activation of phospholipase A2 required the synergistic action of tetraprenol and TXA2.  相似文献   

13.
An increased entry of Ca2+ across the plasma membrane plays a key role in the generation and maintenance of the [Ca2+]i signals seen in cells following activation of receptors coupled to the PLC/InsP3 signaling pathway. In recent years, considerable efforts have been made to define the nature and control of this agonist-enhanced Ca2+ entry. To date, these studies have largely focussed on the so-called 'capacitative' or store-operated model and, although many important details remain unclear, the critical role this mechanism plays in maintaining the sustained elevated 'plateau' type of [Ca2+]i response seen at high agonist concentrations is now well established. Far less well understood is the nature of the enhanced Ca2+ entry associated with the more complex [Ca2+]i signals typical of stimulation at more physiological levels of agonist. Where such entry has been considered, it too has generally been assumed to result from a capacitative or 'store-operated' mechanism. Significantly, however, direct evidence in support of this assumption is lacking. This review attempts to critically examine this assumption and presents the argument that several key characteristics of capacitative or store-operated mechanisms of agonist-activated Ca2+ entry are incompatible with its operation during these types of [Ca2+]i signal.  相似文献   

14.
The role of Ca2+ in the contractility of rabbit small intestine in vitro.   总被引:3,自引:0,他引:3  
This study evaluated the role of Ca2+ in spontaneous and ACh- and KCl-induced contractions in longitudinal and circular smooth muscle from rabbit small intestine in vitro. In the first experiment, the amplitude, frequency and tone of spontaneous contractions in longitudinal and circular smooth muscle of small intestine were determined and, in the second experiment, the ACh- and KCl-induced responses of longitudinal and circular smooth muscle were measured. Atropine and guanethidine reduced the amplitude and tone of contractions in longitudinal and circular muscle, but reduced the frequency of contractions in circular muscle, only. TTX attenuated the amplitude of contractions and decreased the tone of contractions in longitudinal muscle, but increased the tone in circular muscle. Ca2+-free solutions, verapamil, nifedipine and caffeine diminished the three parameters of spontaneous contractions. Thapsigargin and cyclopiazonic acid increased the amplitude and tone of contractions in ileum longitudinal muscle, only, and cyclopiazonic acid increased the amplitude of contractions in circular muscle. Ca2+-free solutions, verapamil, nifedipine, thapsigargin, cyclopiazonic acid, and caffeine diminished ACh- and KCl-induced contractions. Those results suggest that extracellular Ca2+ plays a role in spontaneous contractions, and extracellular and intracellular Ca2+ participate in the ACh- and KCl-induced contractions of rabbit small intestine.  相似文献   

15.
C62B rat glioma cells respond to muscarinic cholinergic stimulation with transient inositol phosphate formation and phospholipase A2-dependent arachidonic acid liberation. Since phospholipase A2 is a Ca2+-sensitive enzyme, we have examined the role of the agonist-stimulated Ca2+ response in production of the arachidonate signal. The fluorescent indicator fura-2 was used to monitor changes in cytoplasmic Ca2+ levels ([Ca2+]i) of C62B cells following acetylcholine treatment. In the presence of extracellular Ca2+, acetylcholine induces a biphasic [Ca2+]i response consisting of an initial transient peak that precedes arachidonate liberation and a sustained elevation that outlasts the phospholipase A2 response. The initial [Ca2+]i peak is not altered by the absence of external Ca2+ and therefore reflects intracellular Ca2+ mobilization. The sustained elevation phase is dependent on the influx of external Ca2+; it is lost in Ca2+-free medium and restored on the addition of Ca2+. Pretreating cells with phorbol dibutyrate substantially inhibits acetylcholine-stimulated inositol phosphate formation and the peak [Ca2+]i response without affecting the sustained elevation in [Ca2+]i. This suggests that the release of internal Ca2+ stores by inositol 1,4,5-trisphosphate can be blocked without interfering with Ca2+ influx. Pretreatment with phorbol also fails to affect acetylcholine-stimulated arachidonate liberation, demonstrating that phospholipase A2 activation does not require normal intracellular Ca2+ release. Stimulated arachidonate accumulation is totally inhibited in Ca2+-free medium and restored by the subsequent addition of Ca2+. Pretreatment with verapamil, a voltage-dependent Ca2+ channel inhibitor, also blocks both the sustained [Ca2+]i elevation and arachidonate liberation without altering peak intracellular Ca2+ release. We conclude that the influx of extracellular Ca2+ is tightly coupled to phospholipase A2 activation, whereas large changes in [Ca2+]i due to mobilization of internal Ca2+ stores are neither sufficient nor necessary for acetylcholine-stimulated phospholipase A2 activation.  相似文献   

16.
剪切应力诱导血小板聚集(shear-induced platelet aggregation, SIPA)是指在高剪切流场诱导下血小板表面的膜糖蛋白(GPⅠb/Ⅸ/Ⅴ和GPⅡb/Ⅲa)与血浆中的von Willebrand因子(vWF)相结合,介导血小板的活化、黏附和聚集,是动脉血栓的重要成因.SIPA还需要Ca2+,ADP/ATP等生化因素的参与,因而SIPA现象是生化因素和力学因素偶合作用的结果.细胞外Ca2+是高剪切应力诱导血小板发生聚集的必需条件,Ca2+的跨膜内流引起细胞骨架结构的改变和GPⅡb/Ⅲa的活化.近来对ADP/ATP位于血小板膜上的P2受体的研究表明,P2受体与细胞内Ca2+协同作用通过多种生化途径调控血小板的活化过程在SIPA的信号传导中起着关键的作用.从力学环境与生化反应的偶合关系入手研究SIPA现象的触发机制,深入研究SIPA现象中的信号转导通路是今后的研究热点之一.  相似文献   

17.
The role of phosphatidic acid (PA) in the signal transduction system of platelets was studied using 1-stearoyl 2-arachidonoyl PA (PASA). When PASA was added to rabbit platelets, aggregation occurred. BW755C, a dual inhibitor of cyclooxygenase and lipoxygenase, as well as p-bromophenacyl bromide and mepacrine, inhibitors of phospholipase A2, inhibited the aggregation induced by low concentrations of PASA, but not that induced by high concentrations. PASA also stimulated, in a dose-dependent manner, arachidonic acid liberation, lysophosphatidylcholine and diacylglycerol formation, and mobilization of intracellular Ca2+; all of which were dependent on the presence of Ca2+ in the outer medium. The arachidonic acid liberation was inhibited by p-bromophenacyl bromide or mepacrine, while diacylglycerol formation by low concentrations of PASA was inhibited by BW755C. With platelet membrane fractions or with the platelets made permeable to Ca2+ by pretreatment with ionomycin, PASA caused arachidonic acid liberation in the presence of Ca2+. Furthermore, PASA enhanced the activity of phospholipase A2 partially purified from platelet cytosol acting on 1-palmitoyl-2-[14C]arachidonoyl-glycerophosphoethanolamine. These results provide evidence that PASA preferentially potentiates the activation of phospholipase A2 in cooperation with Ca2+, suggesting that PA acts as a positive feedback regulator to potentiate the activation of phospholipase A2 and contributes to the amplification of platelet activation.  相似文献   

18.
Cloning of the rat basophilic leukemia (RBL) cell lines demonstrates variability in cell chromosome number (approximately 44-70) and in their capacity to release histamine following an IgE- or Ca2+-ionophore stimulus. After IgE activation there is increased phospholipid methylation, Ca2+ influx, arachidonic acid, and histamine release. On Ca2+ ionophore A23187 stimulation, phospholipid methylation is not increased, but Ca2+ influx, arachidonic acid, and histamine release occur. Variants of the RBL-cloned sublines defective at different stages in the release process were obtained and used to sequence the different events in the release process: IgE activation is followed by methylation, Ca2+ influx, arachidonic acid, and histamine release. However, there are other variants with defects in intermediate steps in the pathway, e.g., increased phospholipid methylation that is not followed by Ca2+ influx or arachidonic acid release not followed by histamine release. Isolating variants carrying drug-resistance markers made hybridization (reconstitution) experiments possible. Two variants were recognized, each of which was deficient in one of the two phospholipid methyltransferase enzymes. Neither of these two variants released histamine; hybrids formed by fusion of these two cell lines have both phospholipid methyltransferase enzymes and release histamine. By other complementation experiments, groups of variants with defects at different steps in the histamine release sequence were recognized. Clearly, these basophilic leukemia cell lines provide a unique system for the study of the mechanism of histamine release.  相似文献   

19.
Calcium, mitochondria and oxygen sensing in the pulmonary circulation   总被引:5,自引:0,他引:5  
Ward JP  Snetkov VA  Aaronson PI 《Cell calcium》2004,36(3-4):209-220
A key event in hypoxic pulmonary vasoconstriction (HPV) is the elevation in smooth muscle intracellular Ca2+ concentration. However, there is controversy concerning the source of this Ca2+, the signal transduction pathways involved, and the identity of the oxygen sensor. Although there is wide support for the hypothesis that hypoxia elicits depolarisation via inhibition of K+ channels, and thus promotes Ca2+ entry through L-type channels, a significant number of studies are inconsistent with this mechanism being either the sole or even major means by which Ca2+ is elevated during HPV. There is strong evidence that intracellular Ca2+ stores play a critical role, and voltage-independent Ca2+ entry mechanisms including capacitative Ca2+ entry (CCE) have also been implicated. There is renewed interest in the role of mitochondria in HPV, both in terms of modulators of Ca2+ homeostasis per se and as oxygen sensors. There is however considerable uncertainty concerning the mechanisms involved in the latter, with proposals for changes in redox couples and both an increase and decrease in mitochondrial production of reactive oxygen species (ROS). In this article we review the evidence for and against involvement of such mechanisms in HPV, and propose a model for the regulation of intracellular [Ca2+] in pulmonary artery during hypoxia in which the mitochondria play a central role.  相似文献   

20.
We have previously shown that acetylcholine-induced contraction of oesophageal circular muscle depends on activation of phosphatidylcholine selective phospholipase C and D, which result in formation of diacylglycerol, and of phospholipase 2 which produces arachidonic acid. Diacylglycerol and arachidonic acid interact synergistically to activate protein kinase C. We have therefore investigated the relationship between cytosolic Ca(2+) and activation of phospholipase A(2) in response to acetylcholine-induced stimulation, by measuring the intracellular free Ca(2+) ([Ca(2+)]i), muscle tension, and [3H] arachidonic acid release. Acetylcholine-induced contraction was associated with increased [Ca(2+)]i and arachidonic acid release in a dose-dependent manner. In Ca(2+)-free medium, acetylcholine did not produce contraction, [Ca(2+)]i increase, and arachidonic acid release. In contrast, after depletion of Ca(2+) stores by thapsigargin (3 microM), acetylcholine caused a normal contraction, [Ca(2+)]i increase and arachidonic acid release. The increase in [Ca(2+)]i and arachidonic acid release were attenuated by the M2 receptor antagonist methoctramine, but not by the M3 receptor antagonist p-fluoro-hexahydro siladifenidol. Increase in [Ca(2+)]i and arachidonic acid release by acetylcholine were inhibited by pertussis toxin and C3 toxin. These findings indicate that contraction and arachidonic acid release are mediated through muscarinic M2 coupled to Gi or rho protein activation and Ca(2+) influx. Acetylcholine-induced contraction and the associated increase in [Ca(2+)]i and release of arachidonic acid were completely reduced by the combination treatment with a phospholipase A(2) inhibitor dimethyleicosadienoic acid and a phospholipase D inhibitor pCMB. They increased by the action of the inhibitor of diacylglycerol kinase R59949, whereas they decreased by a protein kinase C inhibitor chelerythrine. These data suggest that in oesophageal circular muscle acetylcholine-induced [Ca(2+)]i increase and arachidonic acid release are mediated through activation of M2 receptor coupled to Gi or rho protein, resulting in the activation of phospholipase A(2) and phospholipase D to activate protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号