首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen binding curves (OEC) for red cell suspensions have a biphasic shape and reduced n50 values when the concentration of 2,3-diphosphoglycerate (DPG) is lowered by aging or experimental procedures. The mechanism for the abnormal shape of the OEC has been related to variations in the activity of free DPG. DPG binds to tetrameric Hb at a single site, and in red cells its normal concentration is equivalent to that of tetrameric Hb. This equivalence renders the oxygen affinity of Hb and the shape of the OEC very sensitive to small changes in the activity of DPG. The OEC for stripped Hb solutions in the presence of nonsaturating concentrations of DPG also exhibit a biphasic shape but with much larger changes in the n values than observed for red cells. Upon addition of chloride, a known competitor of DPG binding to Hb, the shape of the OEC becomes similar to that of red cell suspensions with the same DPG/Hb ratio. Studies on Hb solutions in the presence of varying concentrations of DPG, but without chloride, have revealed that the cofactor shifts the entire OEC to the right, including both its upper and lower asymptotes. This finding indicates that DPG lowers the intrinsic oxygen affinity for both the T and R states. Theoretical considerations leading to a successful modeling of OEC obtained under varying conditions of DPG and chloride require an expanded two-state allosteric model in which allowance is made for DPG-dependent variations in the dissociation constants of oxygen for both the T and R conformations.  相似文献   

2.
Precise oxygen equilibrium curves of human adult hemoglobin were determined by the automatic recording method at several temperatures in the presence and absence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP) with 0.05 M 2,2-bis(hydroxymethyl)-2,2',2'-nitrolotriethanol (bis-tris) buffers (pH 7.4) containing 0.1 M Cl-. The equilibrium data were analyzed according to the Adair scheme, and the heats, deltaHi (i = 1,2,3,4) and the entropy changes, deltaSi (i = 1,2,3,4), for the individual oxygenation steps were obtained. The shape of the equilibrium curve varies on temperature changes whether DPG or IHP is present or absent. In consequence, the deltaHi value depends on i and on the presence of DPG and IHP. Behavior of deltaSi is similar to that of deltaHi. The similar behavior of deltaHi and deltaSi resulted in a compensation phenomenon. The contribution of T cdeltaSi to the free energy change is compensated by the contribution of deltaHi at the first three oxygenation steps but not at the fourth step, and for i = 1,2, and 3 changes of T cdeltaSi value upon the addition of DPG and IHP are compensated by accompanied changes of deltaHi value, where T c (= 260 K) is the compensation temperature. A major part of both the enthalpy-entropy compensation and nonuniformity of deltaHi and deltaSi appears to be attributable to contributions of the oxygen-linked binding of Cl-, DPG and IHP, by hemoglobin. The present results do not necessarily support the earlier idea of Wyman that the cooperative oxygenbinding is essentially an entropy effect.  相似文献   

3.
The linkage between the four-step binding of oxygen and the binding of heterotropic anionic ligands in hemoglobin was investigated by accurately measuring and analyzing the oxygen equilibrium curves of human adult hemoglobin in the presence and absence of various concentrations of one or two of the following materials: chloride (Cl-), 2,3-diphosphoglycerate (DPG), and inositol hexaphosphate (IHP). Each equilibrium curve was analyzed according to the Adair equation to evaluate the four-step oxygen equilibrium constants (Adair constants) and the median oxygen pressure. The binding constants of the anions for the molecular species of hemoglobin carrying j oxygen molecules, Hb(O2)j(j=0,1,...,4), were evaluated from the dependences of the Adair constants and the median oxygen pressure on the anion concentration by introducing a model which takes the competitive binding of Cl- and DPG or IHP into account. Assumptions made in the model are: (a) the hemoglobin molecule has two oxygen-linked binding sites for Cl- which are equivalent and independent and (b) no Cl- can be bound to hemoglobin to which DPG or IHP is already bound and vice versa. Thus, we could obtain values for the intrinsic binding constants of Cl- and DPG, i.e., the constants in the absence of other competitive anions. For IHP, only the binding constants and apparent binding constants for Hb and Hb(O2)2 were obtained. Values of the Cl- binding constants and apparent binding constants for DPG and IHP, i.e., the binding constants in the presence of Cl- for Hb and Hb(O2)4, were in reasonable agreement with literature values. From the binding constants we calculated anion binding curves for Hb(O2)j(J=0,1,...,4), the number of anions bound to Hb(O2)J, And the relationship between fractional anion saturation of hemoglobin and fractional oxygen saturation. The numbers of released anions are not uniform with respect to oxygenation step. This non-uniformity is the reason for the changes in the shape of the oxygen equilibrium curve with anion concentration changes and for the non-uniform dependences of the Adair constants on anion concentration, and also results in non-linear relations between anion saturation and oxygen saturation. The anion binding constants and various binding properties of the anions derived from those constants are consistent with those observed by other investigators using different techniques, indicating that the present model describes the oxygen-linked competitive anion binding well.  相似文献   

4.
In order to clarify the role of salt-bridges in hemoglobin, the oxygen equilibrium curves and electron paramagnetic resonance (EPR) spectra of cobalt-iron hybrid hemoglobins were determined. The EPR spectra of deoxy alpha(Co)2 beta(Fe)2 could be interpreted as a mixture of two distinct paramagnetic species: one showed a maximum of the first derivative spectrum at g = 2.39 and the other at g = 2.33. The oxygen equilibrium curves of the hybrid indicated that the former is assignable to the T structure and the latter to the R structure. The cooperativity of oxygen binding of alpha(Co)2 beta(Fe)2 exhibited a maximum at g = 2.33, which is characteristic of the R structure, regardless of the pH. Addition of inositol hexaphosphate (IHP) to des-Arg alpha(Co)2 beta(Fe)2 restored the cooperativity of oxygen binding, which implies that the deoxygenated form of des-Arg alpha(Co)2 beta(Fe)2 is converted to the T structure upon addition of IHP. However, the EPR signal at g = 2.39 was not restored upon conversion to the T structure by addition of IHP. It is therefore concluded that the EPR spectrum of the deoxy alpha(Co) subunit depends both on the quaternary structure and on the localized strain at the heme.  相似文献   

5.
The allosteric transition of yeast phosphofructokinase has been studied by solution x-ray scattering. The scattering curves corresponding to the native enzyme (T conformation) were found to be similar to the curves recorded in the presence of saturating concentrations of fructose 6-phosphate (R conformation) or AMP (R or R' conformation). However, the curves obtained in the presence of ATP are clearly different: the radius of gyration increases and the secondary minima and maxima are systematically shifted to lower angles, suggesting a swelling of the enzyme in the presence of ATP. These results give the first direct evidence for the existence of an ATP-induced T' conformation, distinct in quaternary structure from the R and T states of the enzyme oligomer, in agreement with our previous modeling of yeast phosphofructokinase regulation. X-ray scattering data are discussed in relation to the distinct molecular mechanisms of the ATP and fructose 6-phosphate allosteric effects involving, respectively, sequential and concerted conformational changes of the enzyme oligomer.  相似文献   

6.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

7.
In the presence of inositol hexaphosphate (IHP), the rate of hemoglobin oxidation by nitrite was much inhibited; however, that of the hemoglobin oxidation by ferricyanide was much accelerated. The difference in the reaction mode was discussed in relation to the interaction of hemoglobin with IHP. The dissociation constant of IHP to oxyhemoglobin was estimated from the rate of the hemoglobin oxidation by ferricyanide in different concentrations of IHP under oxygen saturated conditions.  相似文献   

8.
The properties of human methemoglobin have been investigated under a wide variety of conditions to determine its conformation and to test for evidence of the T state conformation which has been proposed by Perutz to exist in the presence of high spin ligands and inositol hexaphosphate (IHP). Subunit dissociation was measured as a criterion for the T state since marked differences in the tetramer-dimer equilibrium exist for oxyhemoglobin (R state) and deoxyhemoglobin (T state). In the absence of IHP, complexes of methemoglobin with both high spin ligands (water, fluoride) or low spin ligands (azide, cyanide) show extensive dissociation in 2,2-bis(hydroxymethyl)-2,2',2"-nitriloethanol buffers, pH 6, 0.1 M NaCl, with values of the tetramer-dimer dissociation constant (K4,2) near 10-5 M. The addition of IHP lowers K4,2 to a value near 10-5 M for all forms of methemoglobin. Combination of IHP with methemoglobin promotes a conformational change, but the change is apparently independence of spin state. The conformation acquired in the presence of IHP is not identical with the T state (K4,2 similar to 10-12 M) and can also occur with hemoglobin in the ferrous form, as revealed by a substantial reduction in K4,2 for CO-hemoglobin upon addition of IHP. Subunit dissociation has also been measured using the haptoglobin reaction, since haptoglobin binds only to hemoglobin dimers. The haptoglobin experiments give results that are qualitatively in agreement with the conclusions reached by ultracentrifuge measurements. Similar results are also obtained by estimating the degree of dissociation on the basis of the material which aggregates following mixing with dithionite. The effect of IHP on azide-binding kinetics with methemoglobin has also been examined. Changes in reactivity is observed upon addition of IHP, but the principal effect is observed upon addition of IHP, but the principal effect is an enhancement of the rate of reaction of the beta chains. Changes in the reactivity of the beta93 sulfhydryl group of methemoglobin also accompany addition of IHP, but in a manner which is largely independent of the spin state of the iron. Similar changes are again found with CO-hemoglobin upon addition of IHP. The rate of binding of bromthymol blue also shows some changes upon addition of IHP, but the changes are more pronounced for deoxyhemoglobin than for methemoglobin. Since the results obtained did not appear to indicate a significant role for spin state in the changes observed, additional studies were undertaken using EPR spectroscopy.  相似文献   

9.
Symmetrical FeZn hybrids of human HbA have been used to measure K(1)(alpha) and K(1)(beta), the dissociation constants for the binding of a single molecule of oxygen to unliganded HbA at an alpha subunit and at a beta subunit, respectively. The kinetic constants, l(1)'(alpha) and l(1)'(beta), for the combination of the first CO molecule to unliganded HbA at an alpha or a beta subunit, respectively, were also measured. Measurements were carried out between pH 6 and pH 8 in the presence and absence of inositol hexaphosphate (IHP). Both equilibrium constants exhibit a significant Bohr effect in the absence of IHP. The addition of IHP to a concentration of 0.1 mM increases both dissociation constants in a pH-dependent manner with the result that both Bohr effects are greatly reduced. These results require a negative thermodynamic linkage between the binding of a single oxygen at either an alpha or a beta subunit and the binding of IHP to the T quaternary structure of HbA. Although the beta hemes are relatively near the IHP binding site, a linkage between that site and the alpha hemes, such that the binding of a single oxygen molecule to the heme of one alpha subunit reduces the affinity of the T state for IHP, requires communication across the molecule. l(1)'(alpha) exhibits a very slight pH dependence, with a maximum variation of 20%, while l(1)'(beta) varies with pH three times as much. IHP has no effect on the pH dependence of either rate constant but reduces l(1)'(alpha) marginally, 20%, and l(1)'(beta) by 2-fold at all pH values.  相似文献   

10.
The cooperative effect of inositol hexakisphosphate (IHP), bezafibrate (BZF), and clofibric acid (CFA) on the spectroscopic (EPR and absorbance) properties of the nitric oxide derivative of ferrous human hemoglobin (HbNO) has been investigated quantitatively. In the presence of IHP, BZF, and CFA, the X-band EPR spectra and the absorption spectra in the Soret region of HbNO display the same basic characteristics described in the presence of 2,3-diphosphoglycerate (2,3-DPG), which have been attributed to a low affinity conformation of the tetramer. Addition to HbNO of two allosteric effectors together (such as IHP and BZF, or IHP and CFA) further stabilizes the low affinity conformation of the ligated hemoprotein (i.e., HbNO). Moreover, in the presence of saturating amounts of IHP, the affinity of BZF and CFA for HbNO increases by about fifteenfold. Likewise, in the presence of both IHP and BZF, as well as in IHP and CFA, the oxygen affinity for ferrous human hemoglobin (Hb) is reduced with respect to that observed in the presence of IHP, BZF, or CFA alone, which in turn is lower than that reported in the absence of any allosteric effector. All the data were obtained at pH 7.0 (in 1.0 × 10−1 M N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]/NaOH buffer system plus 1.0 × 10−1 M NaCl), as well as at 100 K and/or 20°C. The results here reported represent clearcut evidence for the cooperative and specific (i.e., functionally relevant) binding of IHP, BZF, and CFA to Hb.  相似文献   

11.
The reaction of human deoxy and oxyhaemoglobin with a macromolecular effector, monomethoxypolyoxyethylene-linked benzene hexacarboxylate, in the presence of a water soluble carbodiimide, produces under defined conditions, the same conjugates preferentially acylated at the two valines beta 1. The oxygen affinity of both these conjugates is decreased by approximately 5-fold compared with that of native Hb (at pH 7.2, in 0.05 M Tris buffer, 25 degrees C, P50: 20.1 and 20.7 Torr versus about 4 Torr for Hb). This difference appears to be due to an overstabilization of the T state probably together with a decrease of the oxygen affinity of the R state. Addition of IHP to the conjugate solutions does not influence the P50 but addition of IHP to the reaction mixtures before the coupling limits the substitution of Hb by the macromolecular effector, to 20% (instead of 100% in absence of IHP). The cooperativity curve is shifted to the right with an Nmax of 3 at about 90% oxygen saturation, which corresponds to a potential release of 48% of oxygen at pH 7.2, 25 degrees C, between 100 and 40 Torr, compared with 40% for blood. Such kinds of conjugates especially those obtained from oxyhaemoglobin which are easily prepared, could be of a great interest as non-diffusing oxygen carriers in transfusional and perfusional fluids.  相似文献   

12.
We have applied the residual dipolar coupling (RDC) method to investigate the solution quaternary structures of (2)H- and (15)N-labeled human normal adult recombinant hemoglobin (rHb A) and a low-oxygen-affinity mutant recombinant hemoglobin, rHb(alpha96Val-->Trp), both in the carbonmonoxy form, in the absence and presence of an allosteric effector, inositol hexaphosphate (IHP), using a stretched polyacrylamide gel as the alignment medium. Our recent RDC results [Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A., and Ho, C. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 517-520] indicate that the quaternary structure of HbCO A in solution is a dynamic ensemble between two previously determined crystal structures, R (crystals grown under high-salt conditions) and R2 (crystals grown under low-salt conditions). On the basis of a comparison of the geometric coordinates of the T, R, and R2 structures, it has been suggested that the oxygenation of Hb A follows the transition pathway from T to R and then to R2, with R being the intermediate structure [Srinivasan, R., and Rose, G. D. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11113-11117]. The results presented here suggest that IHP can shift the solution quaternary structure of HbCO A slightly toward the R structure. The solution quaternary structure of rHbCO(alpha96Val-->Trp) in the absence of IHP is similar to that of HbCO A in the presence of IHP, consistent with rHbCO(alpha96Val-->Trp) having an affinity for oxygen lower than that of Hb A. Moreover, IHP has a much stronger effect in shifting the solution quaternary structure of rHbCO(alpha96Val-->Trp) toward the R structure and toward the T structure, consistent with IHP causing a more pronounced decrease in its oxygen affinity. The results presented in this work, as well as other results recently reported in the literature, clearly indicate that there are multiple quaternary structures for the ligated form of hemoglobin. These results also provide new insights regarding the roles of allosteric effectors in regulating the structure and function of hemoglobin. The classical two-state/two-structure allosteric mechanism for the cooperative oxygenation of hemoglobin cannot account for the structural and functional properties of this protein and needs to be revised.  相似文献   

13.
R E Benesch  R Edalji  R Benesch 《Biochemistry》1977,16(12):2594-2597
The interaction of three inositol esters, inositol hexaphosphate (IHP), inositol pentaphosphate (IPP), and inositol hexasulfate (IHS), with hemoglobin has been investigated. The proton uptake method was used to obtain the six binding constants for deoxy- and oxyhemoglobin. These data combined with oxygen binding curves over a range of cofactor concentrations were used to test theoretical and empirical equations relating the affinity of hemoglobin for oxygen and allosteric effectors. The Bohr and Haldane coefficients in the presence of the inositol esters are unequal at low, but not at high, concentration of the cofactors. The maximum value reached by both parameters increases with the number of negative charges of the polyanion. 2,3-Diphosphoglycerate (DPG) differs sharply from the inositol esters since even at high concentrations of this cofactor, the Haldane coefficient remains elevated. This is a reflection of the negligible affinity of DPG for fully oxygenated hemoglobin.  相似文献   

14.
The properties of three HbA variants with different mutations at the beta102 position, betaN102Q, betaN102T, and betaN102A, have been examined. All three are inhibited in their ligand-linked transition from the low affinity T quaternary state to the high affinity Re quaternary state. In the presence of inositol hexaphosphate, IHP, none of them exhibits cooperativity in the binding of oxygen. This is consistent with the destabilization of the Re state as a result of the disruption of the hydrogen bond that normally forms between the beta102 asparagine residue and the alpha94 aspartate residue in the Re state. However, these three substitutions also alter the properties of the T state of the hemoglobin tetramer. In the presence of IHP, the first two substitutions result in large increases in the ligand affinities of the beta-subunits within the T state structure. The betaN102A variant, however, greatly reduces the pH dependencies of the affinities of the alpha and beta subunits, K1(alpha) and K1(beta), respectively, for the binding of the first oxygen molecule in the absence of IHP. In the presence of IHP, the T state of this variant is strikingly similar to that of HbA under the same conditions. For both hemoglobins, K1(alpha) and K1(beta) exhibit only small Bohr effects. In the absence of IHP, the affinities of the alpha and beta subunits of HbA for the first oxygen are increased, and both exhibit greatly increased Bohr effects. However, in contrast to the behavior of HbA, the ligand-binding properties of the T state tetramer of the betaN102A variant are little affected by the addition or removal of IHP. It appears that along with its effect on the stability of the liganded Re state, this mutation has an effect on the T state that mimics the effect of adding IHP to HbA. It inhibits the set of conformational changes, which are coupled to the K1 Bohr effects and normally accompany the binding of the first ligand to the HbA tetramer in the absence of organic phosphates.  相似文献   

15.
Demenis MA  Leone FA 《IUBMB life》2000,49(2):113-119
Polidocanol-solubilized alkaline phosphatase was purified to homogeneity with a specific activity of 822.3 U/mg. In the absence of Mg2+ and Ca2+ ions and at pH 9.4, the enzyme hydrolyzed ATP in a manner that could be represented by biphasic curves with V = 94.3 U/mg, K0.5 = 17.2 microM, and n = 1.8 and V = 430.3 U/mg, K0.5 = 3.2 mM, and n = 3.2 for high- and low-affinity sites, respectively. In the presence of saturating concentrations of Mg2+ or Ca2+ ions, the hydrolysis of ATP also followed biphasic curves. However, the specific activity increased to as much as 1,000 U/mg, whereas the K0.5 and n values remained almost unchanged. In the presence of nonsaturating concentrations of metal ions, the hydrolysis of ATP was similar to that observed in the absence of these ions, but with a marked decrease in K0.5 values. At pH 7.5, the enzyme also hydrolyzed ATP with K0.5 = 8.1 microM and V = 719.8 U/mg. Apparently, alkaline phosphatase was able to hydrolyze ATP in vivo, either at pH 7.5 or pH 9.4. These data contribute to the knowledge of the biological properties of skeletal alkaline phosphatase and suggest that this enzyme may have a high-affinity binding site for ATP at alkaline pH.  相似文献   

16.
F N Briggs 《Cell calcium》1986,7(4):249-260
Techniques are described for using blocking agents to distinguish between enzymes which are functional monomers and oligomers. To achieve this distinction the blocking agent must react exclusively at the active site with a stoichiometry of one mole of site per mole enzyme. The effect of the blocking agent on enzymatic activity in oligomers of n = 2 and 4 are described and the optimal degree of blocking is considered for tests of enzyme activity at saturating and less than saturating substrate concentrations. For saturating concentrations and a dimer the distinction between dimer and monomer is best observed with 50 per cent of sites blocked. For a tetramer the distinction is best made at higher degrees of blockade. The use of saturating substrate concentrations is thus limited to small oligomers. If nonsaturating substrate concentrations are used and normalized double reciprocal plots of the dependence of enzyme activity on substrate concentrations are made then the distinction between monomer and oligomer can readily be made for dimers, tetramers, and higher n-mers. The principles developed to distinguished monomeric from oligomeric enzymes are applied to published data obtained with the Ca Mg-ATPase of sarcoplasmic reticulum. Fluorescein isothiocyanate is the blocking agent. Plots of the published data support both the monomeric and tetrameric models for allosteric regulation with the preponderance of the data supporting the monomeric model.  相似文献   

17.
The steady-state kinetic mechanism of vitamin K-dependent carboxylase from calf liver has been investigated by initial-velocity measurements with varying concentrations of two carboxylase substrates and constant, nonsaturating concentrations of the other two substrates. With all combinations of the varied substrates tested linear kinetics were obtained with lines intersecting on the left side of the 1/v axis in double-reciprocal plots. Thus the carboxylase has a sequential reaction mechanism which includes the quinternary complex of the enzyme with its four substrates. A mechanism with the ordered steady-state addition of all substrates to the enzyme accords well with the results. A totally random mechanism was excluded but the alternative possibility remained that part of the substrates are added in a rapid-equilibrium random reaction. Experiments with saturating constant concentrations of sodium bicarbonate and varying concentrations of the other substrates suggest that bicarbonate (CO2) is either the first or, more probably, the last substrate bound to the enzyme.  相似文献   

18.
Magnetic circular dichroism (MCD) spectroscopy has been used to explore the connection between optical spectra and the high spin population of several hemoglobins under various conditions. It is found that the effectiveness of IHP in inducing spectral changes can be markedly affected by solvent. For example, the IHP-induced spectral changes in the visible region for nitritomethemoglobin-A in mixed buffer solvent systems (glycerol or polyethylene glycol (PEG), mw 190–210) are more than double those observed in aqueous buffers. We estimate that IHP induces a mix of R/T forms in bis-tris phosphate buffers, for NO2?metHb that is only about 50% T form. While PEG and glycerol both lead to enhanced IHP-induced spectral differences, they behave differently in two aspects. PEG shifts the visible MCD and absorption spectra of F?metHb-A. supposedly already biased towards the T form by ligand, in the same direction that IHP does. PEG also maximizes the spin state changes with IHP for three R form hemoglobins and N3?metHb-A, and so appears to stabilize the T form in all cases. Glycerol does not. In addition, the apparent binding constant for NO2? to H2OmetHb-A differs between these two solvents. Comparison of the data from several hemoglobins leads to the conclusion that the changes in spin state distributions induced by IHP correlate well with quarternary structure for a given hemoglobin. An analogous correlation amongst various proteins between initial spin state distribution (IHP) absent) and quarternary structure is not found.  相似文献   

19.
The substituted cysteine accessibility method was used to probe the surface exposure of a pore-lining threonine residue (T6') common to both the glycine receptor (GlyR) and gamma-aminobutyric acid, type A receptor (GABA(A)R) chloride channels. This residue lies close to the channel activation gate, the ionic selectivity filter, and the main pore blocker binding site. Despite their high amino acid sequence homologies and common role in conducting chloride ions, recent studies have suggested that the GlyRs and GABA(A)Rs have divergent open state pore structures at the 6' position. When both the human alpha1(T6'C) homomeric GlyR and the rat alpha1(T6'C)beta1(T6'C) heteromeric GABA(A)R were expressed in human embryonic kidney 293 cells, their 6' residue surface accessibilities differed significantly in the closed state. However, when a soluble cysteine-modifying compound was applied in the presence of saturating agonist concentrations, both receptors were locked into the open state. This action was not induced by oxidizing agents in either receptor. These results provide evidence for a conserved pore opening mechanism in anion-selective members of the ligand-gated ion channel family. The results also indicate that the GABA(A)R pore structure at the 6' level may vary between different expression systems.  相似文献   

20.
The cooperative O(2)-binding of hemoglobin (Hb) have been assumed to correlate to change in the quaternary structures of Hb: T(deoxy)- and R(oxy)-quaternary structures, having low and high O(2)-affinities, respectively. Heterotropic allosteric effectors have been shown to interact not only with deoxy- but also oxy-Hbs causing significant reduction in their O(2)-affinities and the modulation of cooperativity. In the presence of two potent effectors, L35 and inositol hexaphosphate (IHP) at pH 6.6, Hb exhibits extremely low O(2)-affinities (K(T)=0.0085mmHg(-1) and K(R)=0.011mmHg(-1)) and thus a very low cooperativity (K(R)/K(T)=1.3 and L(0)=2.4). (1)H-NMR spectra of human adult Hb with these two effectors were examined in order to determine the quaternary state of Hb in solution and to clarify the correlation between the O(2)-affinities and the structural change of Hb caused by the heterotropic effectors. At pH 6.9, (1)H-NMR spectrum of deoxy-Hb in the presence of L35 and IHP showed a marker of the T-quaternary structure (the T-marker) at 14ppm, originated from inter- dimeric α(1)β(2)- (or α(2)β(1)-) hydrogen-bonds, and hyperfine-shifted (hfs) signals around 15-25ppm, caused by high-spin heme-Fe(II)s. Upon addition of O(2), the hfs signals disappeared, reflecting that the heme-Fe(II)s are ligated with O(2), but the T-marker signals still remained, although slightly shifted and broadened, under the partial pressure of O(2) (P(O2)) of 760mmHg. These NMR results accompanying with visible absorption spectroscopy and visible resonance Raman spectroscopy reveal that oxy-Hb in the presence of L35 and IHP below pH 7 takes the ligated T-quaternary structure under the P(O2) of 760mmHg. The L35-concentration dependence of the T-marker in the presence of IHP indicates that there are more than one kind of L35-binding sites in the ligated T-quaternary structure. The stronger binding sites are probably intra-dimeric binding sites between α(1)G- and β(1)G-helices, and the other weaker binding site causes the R→T transition without release of O(2). The fluctuation of the tertiary structure of Hb seems to be caused by both the structural perturbation of α(1)β(1) (or α(2)β(2)) intra-dimeric interface, where the stronger L35-binding sites exist, and by the IHP-binding to the α(1)α(2)- (or β(1)β(2)-) cavity. The tertiary structural fluctuation induced by the allosteric effectors may contribute to the significant reduction of the O(2)-affinity of oxy-Hb, which little depends on the quaternary structures. Therefore, the widely held assumptions of the structure-function correlation of Hb - [the deoxy-state]=[the T-quaternary structure]=[the low O(2)-affinity state] and [the oxy-state]=[the R-quaternary structure]=[the high O(2)-affinity state] and the O(2)-affiny of Hb being regulated by the T/R-quaternary structural transition - are no longer sustainable. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号