首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine enteric caliciviruses (BEC) are associated with diarrhea in young calves. The BEC strains detected in Europe form a third genogroup within the genus "Norwalk-like viruses" (NLV) of the family Caliciviridae. In this report, we present sequence, clinical, and histological data characterizing a novel enteropathogenic BEC strain, NB, detected in fecal specimens from calves in the United States. The complete RNA genome of the NB virus is 7,453 bases long and is organized into two open reading frames (ORFs). ORF-1 is 2,210 amino acids long and encodes a large nonstructural polyprotein contiguous with the major capsid protein (VP1), similar to the lagoviruses and "Sapporo-like viruses" (SLV). The conserved calicivirus motifs were identified in the nonstructural proteins. ORF-2 is located at the 3' end of the genome and encodes a small basic protein (VP2) of 225 amino acids. The 5' and 3' untranslated regions are 74 and 67 bases long, respectively. Among caliciviruses, NB virus shows amino acid identities of 14.1 to 22.6% over the entire ORF-1 nonstructural-protein sequence with NLV, SLV, vesivirus, and lagovirus strains, while the overall sequence identity of the complete NB VP-1 with other caliciviruses is low, varying between 14.6 and 26.7%. Phylogenetic analysis of the complete VP1 protein, including strains from all four calicivirus genera, showed the closest grouping of NB virus to be with viruses in the genus Lagovirus, which cause liver infections and systemic hemorrhage in rabbits. In gnotobiotic calves, however, NB virus elicited only diarrhea and intestinal lesions that were most severe in the upper small intestine (duodenum and jejunum), similar to the NLV BEC strains. The tissues of major organs, including the lung, liver, kidney, and spleen, had no visible microscopic lesions.  相似文献   

2.
Norwalk virus, a member of the family Caliciviridae, is an important cause of acute epidemic nonbacterial gastroenteritis. Norwalk and related viruses are classified in a separate genus of Caliciviridae called Norovirus, which is comprised of at least three genogroups based on sequence differences. Many of the currently available immunologic reagents used to study these viruses are type specific, which limits the identification of antigenically distinct viruses in detection assays. Identification of type-specific and cross-reactive epitopes is essential for designing broadly cross-reactive diagnostic assays and dissecting the immune response to calicivirus infection. To address this, we have mapped the epitopes on the norovirus capsid protein for both a genogroup I-cross-reactive monoclonal antibody and a genogroup II-cross-reactive monoclonal antibody by use of norovirus deletion and point mutants. The epitopes for both monoclonal antibodies mapped to the C-terminal P1 subdomain of the capsid protein. Although the genogroup I-cross-reactive monoclonal antibody was previously believed to recognize a linear epitope, our results indicate that a conformational component of the epitope explains the monoclonal antibody's genogroup specificity. Identification of the epitopes for these monoclonal antibodies is of significance, as they are components in a commercially available norovirus-diagnostic enzyme-linked immunosorbent assay.  相似文献   

3.
The family Caliciviridae is divided into four genera and consists of single-stranded RNA viruses with hosts ranging from humans to a wide variety of animals. Human caliciviruses are the major cause of outbreaks of acute nonbacterial gastroenteritis, whereas animal caliciviruses cause various host-dependent illnesses with a documented potential for zoonoses. To investigate inter- and intragenus structural variations and to provide a better understanding of the structural basis of host specificity and strain diversity, we performed structural studies of the recombinant capsid of Grimsby virus, the recombinant capsid of Parkville virus, and San Miguel sea lion virus serotype 4 (SMSV4), which are representative of the genera Norovirus (genogroup 2), Sapovirus, and Vesivirus, respectively. A comparative analysis of these structures was performed with that of the recombinant capsid of Norwalk virus, a prototype member of Norovirus genogroup 1. Although these capsids share a common architectural framework of 90 dimers of the capsid protein arranged on a T=3 icosahedral lattice with a modular domain organization of the subunit consisting of a shell (S) domain and a protrusion (P) domain, they exhibit distinct differences. The distally located P2 subdomain of P shows the most prominent differences both in shape and in size, in accordance with the observed sequence variability. Another major difference is in the relative orientation between the S and P domains, particularly between those of noroviruses and other caliciviruses. Despite being a human pathogen, the Parkville virus capsid shows more structural similarity to SMSV4, an animal calicivirus, suggesting a closer relationship between sapoviruses and animal caliciviruses. These comparative structural studies of caliciviruses provide a functional rationale for the unique modular domain organization of the capsid protein with an embedded flexibility reminiscent of an antibody structure. The highly conserved S domain functions to provide an icosahedral scaffold; the hypervariable P2 subdomain may function as a replaceable module to confer host specificity and strain diversity; and the P1 subdomain, located between S and P2, provides additional fine-tuning to position the P2 subdomain.  相似文献   

4.
Jena virus (JV) is a noncultivatable bovine enteric calicivirus associated with diarrhea in calves and was first described in Jena, Germany. The virus was serially passaged 11 times in colostrum-deprived newborn calves and caused diarrheal disease symptoms at each passage. The complete JV genome sequence was determined by using cDNA made from partially purified virus obtained from a single stool sample. JV has a positive-sense single-stranded RNA genome which is 7,338 nucleotides in length, excluding the poly(A) tail. JV genome organization is similar to that of the human Norwalk-like viruses (NLVs), with three separate open reading frames (ORFs) and a 24-nucleotide sequence motif located at the 5′ terminus of the genome and at the start of ORF 2. The polyprotein (ORF 1) consists of 1,680 amino acids and has the characteristic 2C helicase, 3C protease, and 3D RNA polymerase motifs also found in the NLVs. However, comparison of the N-terminal 100 amino acids of the JV polyprotein with those of the group 1 and group 2 NLVs showed a considerable divergence in sequence. The capsid protein (ORF 2) at 519 amino acids is smaller than that of all other caliciviruses. JV ORF 2 was translated in vitro to produce a 55-kDa protein that reacted with postinfection serum but not preinfection serum. Phylogenetic studies based on partial RNA polymerase sequences indicate that within the Caliciviridae JV is most closely related to the group 1 NLVs.  相似文献   

5.
Caliciviridae are small icosahedral positive-sense RNA-containing viruses and include the human noroviruses, a leading cause of infectious acute gastroenteritis and feline calicivirus (FCV), which causes respiratory illness and stomatitis in cats. FCV attachment and entry is mediated by feline junctional adhesion molecule A (fJAM-A), which binds to the outer face of the capsomere, inducing a conformational change in the capsid that may be important for viral uncoating. Here we present the results of our structural investigation of the virus-receptor interaction and ensuing conformational changes. Cryo-electron microscopy and three-dimensional image reconstruction were used to solve the structure of the virus decorated with a soluble fragment of the receptor at subnanometer resolution. In initial reconstructions, the P domains of the capsid protein VP1 and fJAM-A were poorly resolved. Sorting experiments led to improved reconstructions of the FCV-fJAM-A complex both before and after the induced conformational change, as well as in three transition states. These data showed that the P domain becomes flexible following fJAM-A binding, leading to a loss of icosahedral symmetry. Furthermore, two distinct conformational changes were seen; an anticlockwise rotation of up to 15° of the P domain was observed in the AB dimers, while tilting of the P domain away from the icosahedral 2-fold axis was seen in the CC dimers. A list of putative contact residues was calculated by fitting high-resolution coordinates for fJAM-A and VP1 to the reconstructed density maps, highlighting regions in both virus and receptor important for virus attachment and entry.  相似文献   

6.
7.
AIMS: To characterize the effect of bovine lactoferrin and lactoferricin B against feline calicivirus (FCV), a norovirus surrogate and poliovirus (PV), as models for enteric viruses. METHODS AND RESULTS: Crandell-Reese feline kidney (CRFK) cells were used for the propagation of FCV and monkey embryo kidney (MEK) cells for PV. The assays included visual assessment of cell lines for cytopathic effects and determination of the percentage cell death using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium] dye reduction assay. Incubation of bovine lactoferrin with CRFK cells either prior to or together with FCV inoculation substantially reduced FCV infection. In contrast, the interference of lactoferrin with the infection of cells with PV was demonstrated only when lactoferrin was present with cell lines and virus for the entire assay period. Using indirect immunofluorescence, lactoferrin was detected on the surface of both CRFK and MEK cells, suggesting that the interference of viral infection may be attributed to lactoferrin binding to the surfaces of susceptible cells, thereby preventing the attachment of the virus particles. Lactoferricin B, a cationic antimicrobial peptide derived from the N-terminal domain of bovine lactoferrin, reduced FCV but not PV infection. CONCLUSION: Lactoferrin was shown to interfere with the infection of cells for both FCV and PV. However, lactoferricin B showed no interference of infection with PV and interference with infection for FCV required the presence of lactoferricin B together with the cell line and virus. SIGNIFICANCE AND IMPACT OF THE STUDY: An in vitro basis is provided for the effects of bovine lactoferrin and lactoferricin B in moderating food-borne infections of enteric viruses.  相似文献   

8.
Viruses need only one or a few structural capsid proteins to build an infectious particle. This is possible through the extensive use of symmetry and the conformational polymorphism of the structural proteins. Using virus-like particles (VLP) from rabbit hemorrhagic disease virus (RHDV) as a model, we addressed the basis of calicivirus capsid assembly and their application in vaccine design. The RHDV capsid is based on a T=3 lattice containing 180 identical subunits (VP1). We determined the structure of RHDV VLP to 8.0-Å resolution by three-dimensional cryoelectron microscopy; in addition, we used San Miguel sea lion virus (SMSV) and feline calicivirus (FCV) capsid subunit structures to establish the backbone structure of VP1 by homology modeling and flexible docking analysis. Based on the three-domain VP1 model, several insertion mutants were designed to validate the VP1 pseudoatomic model, and foreign epitopes were placed at the N- or C-terminal end, as well as in an exposed loop on the capsid surface. We selected a set of T and B cell epitopes of various lengths derived from viral and eukaryotic origins. Structural analysis of these chimeric capsids further validates the VP1 model to design new chimeras. Whereas most insertions are well tolerated, VP1 with an FCV capsid protein-neutralizing epitope at the N terminus assembled into mixtures of T=3 and larger T=4 capsids. The calicivirus capsid protein, and perhaps that of many other viruses, thus can encode polymorphism modulators that are not anticipated from the plane sequence, with important implications for understanding virus assembly and evolution.  相似文献   

9.
10.
11.
In the present study we report on evolution of calicivirus RNA from a patient with chronic diarrhea (i.e., lasting >2 years) and viral shedding. Partial sequencing of open reading frame 1 (ORF1) from 12 consecutive isolates revealed shedding of a genogroup II virus with relatively few nucleotide changes during a 1-year period. The entire capsid gene (ORF2) was also sequenced from the same isolates and found to contain 1,647 nucleotides encoding a protein of 548 amino acids with similarities to the Arg320 and Mx strains. Comparative sequence analysis of ORF2 revealed 32 amino acid changes during the year. It was notable that the vast majority of the cumulative amino acid changes (8 of 11) appeared within residues 279 to 405 located within the hypervariable domain (P2) of the capsid protein and hence were subject to immune pressure. An interesting and novel observation was that the accumulated amino acid changes in the P2 domain resulted in predicted structural changes, including disappearance of a helix structure, and thus a possible emergence of a new phenotype. FUT2 gene polymorphism characterization revealed that the patient is heterozygous at nucleotide 428 and thus Secretor(+), a finding in accordance with the hypothesis of FUT2 gene polymorphism and calicivirus susceptibility. To our knowledge, this is the first report of RNA evolution of calicivirus in a single individual, and our data suggest an immunity-driven mechanism for viral evolution. We also report on chronic virus excretion, immunoglobulin treatment, and modification of clinical symptoms; our observations from these studies, together with the FUT2 gene characterization, may lead to a better understanding of calicivirus pathogenesis.  相似文献   

12.
Recombinant forms of the bacteriophage MS2 and its RNA-free (empty) MS2 capsid were analyzed in solution to determine if RNA content and/or the A (or maturation) protein play a role in the global arrangement of the virus protein shell. Analysis of the (coat) protein shell of recombinant versions of MS2 that lack the A protein revealed dramatic differences compared to wild-type MS2 in solution. Specifically, A protein-deficient virus particles form a protein shell of between 31(+/-1) A and 37(+/-1) A. This is considerably thicker than the protein shell formed by either the wild-type MS2 or the RNA-free MS2 capsid, whose protein shells have a thickness of 21(+/-1) A and 25(+/-1) A, respectively. Since the A protein is known to separate from the intact MS2 protein shell after infection, the thin shell form of MS2 represents the pre-infection state, while the post-infection state is thick. Interestingly, these A protein-dependent differences in the virus protein shell are not seen using crystallography, as the crystallization process seems to artificially compact the wild-type MS2 virion. Furthermore, when the A protein is absent from the virus shell (post-infection), the process of crystallization exerts sufficient force to convert the protein shell from the post-infection (thick) state to the pre-infection (thin) conformation. In summary, the data are consistent with the idea that RNA content or amount does not affect the structure of the MS2 virus shell. Rather, the A protein influences the global arrangement of the virus coat dramatically, possibly by mediating the storage of energy or tension within the protein shell during virus assembly. This tension may later be used to eject the MS2 genomic RNA and A protein fragments into the host during infection.  相似文献   

13.
Capsid functions of inactivated human picornaviruses and feline calicivirus   总被引:1,自引:0,他引:1  
The exceptional stability of enteric viruses probably resides in their capsids. The capsid functions of inactivated human picornaviruses and feline calicivirus (FCV) were determined. Viruses were inactivated by UV, hypochlorite, high temperature (72 degrees C), and physiological temperature (37 degrees C), all of which are pertinent to transmission via food and water. Poliovirus (PV) and hepatitis A virus (HAV) are transmissible via water and food, and FCV is the best available surrogate for the Norwalk-like viruses, which are leading causes of food-borne and waterborne disease in the United States. The capsids of all 37 degrees C-inactivated viruses still protected the viral RNA against RNase, even in the presence of proteinase K, which contrasted with findings with viruses inactivated at 72 degrees C. The loss of ability of the virus to attach to homologous cell receptors was universal, regardless of virus type and inactivation method, except for UV-inactivated HAV, and so virus inactivation was almost always accompanied by the loss of virus attachment. Inactivated HAV and FCV were captured by homologous antibodies. However, inactivated PV type 1 (PV-1) was not captured by homologous antibody and 37 degrees C-inactivated PV-1 was only partially captured. The epitopes on the capsids of HAV and FCV are evidently discrete from the receptor attachment sites, unlike those of PV-1. These findings indicate that the primary target of UV, hypochlorite, and 72 degrees C inactivation is the capsid and that the target of thermal inactivation (37 degrees C versus 72 degrees C) is temperature dependent.  相似文献   

14.
Farkas T  Sestak K  Wei C  Jiang X 《Journal of virology》2008,82(11):5408-5416
In this study, we report the characterization of a novel calicivirus (CV), the Tulane virus (TV), which was isolated from stool samples of captive juvenile rhesus macaques (Macaca mulatta) of the Tulane National Primate Research Center. The complete genome of TV contains 6,714 nucleotides plus a poly(A) tail and is organized into three open reading frames (ORFs) that encode the nonstructural (NS) polyprotein (ORF1); the capsid protein (ORF2), with an estimated molecular mass of 57.9 kDa; and a possible minor structural protein (ORF3), with an isoelectric point (pI) of 10.0 and a calculated molecular mass of 22.8 kDa. The NS polyprotein revealed all typical CV amino acid motifs, including GXXGXGKT (NTPase), EYXEX (Vpg), GDCG (protease), and GLPSG and YGDD (polymerase). Phylogenetic trees constructed for the NS polyprotein, NTPase, protease, polymerase, and capsid protein sequences consistently placed the TV on a branch rooted with Norovirus, but with distances equal to those between other genera. The TV can be cultured in a monkey kidney cell line (LLC-MK2) with the appearance of typical cytopathic effect. TV exhibits a typical CV morphology, with a diameter of 36 nm, and has a buoyant density of 1.37 g/ml. According to these physicochemical and genetic characteristics, TV represents a new CV genus for which we propose the name "Recovirus" (rhesus enteric CV). Although the pathogenicity of TV in rhesus macaques remains to be elucidated, the likelihood of TV causing intestinal infection and the availability of a tissue culture system make this virus a valuable surrogate for human CVs.  相似文献   

15.
16.
Noroviruses (previously Norwalk-like viruses) are the most common viral agents associated with food- and waterborne outbreaks of gastroenteritis. In the absence of culture methods for noroviruses, animal caliciviruses were used as model viruses to study inactivation by nonionizing (253.7-nm-wavelength [UV]) and ionizing (gamma) radiation. Here, we studied the respiratory feline calicivirus (FeCV) and the presumed enteric canine calicivirus (CaCV) and compared them with the well-studied bacteriophage MS2. When UV irradiation was used, a 3-log(10) reduction was observed at a fluence of 120 J/m(2) in the FeCV suspension and at a fluence of 200 J/m(2) for CaCV; for the more resistant phage MS2 there was a 3-log(10) reduction at a fluence of 650 J/m(2). Few or no differences were observed between levels of UV inactivation in high- and low-protein-content virus stocks. In contrast, ionizing radiation could readily inactivate MS2 in water, and there was a 3-log(10) reduction at a dose of 100 Gy, although this did not occur when the phage was diluted in high-protein-content stocks of CaCV or FeCV. The low-protein-content stocks showed 3-log(10) reductions at a dose of 500 Gy for FeCV and at a dose of 300 for CaCV. The inactivation rates for both caliciviruses with ionizing and nonionizing radiation were comparable but different from the inactivation rates for MS2. Although most FeCV and CaCV characteristics, such as overall particle and genome size and structure, are similar, the capsid sequences differ significantly, making it difficult to predict human norovirus inactivation. Adequate management of UV and gamma radiation processes for virus inactivation should limit public health risks.  相似文献   

17.
Computer-assisted analysis of the amino acid sequence of the product encoded by the sequenced 3' portion of the cricket paralysis virus (CrPV), an insect picornavirus, genome showed that this protein is homologous not to the RNA-directed RNA polymerases, as originally suggested, but to the capsid proteins of mammalian picornaviruses. Alignment of the CrPV protein sequence with those of picornavirus and calicivirus capsid proteins demonstrated that the sequenced portion of the insect picornavirus genome encodes the C-terminal part of VP3 and the entire VP1. Thus CrPV seems to have a genome organization distinct from that of other picornaviruses but closely resembling that of caliciviruses, with the capsid proteins encoded in the 3' part of the genome. On the other hand, the tentative phylogenetic trees generated from the VP3 alignment revealed grouping of CrPV with hepatitis A virus, a true picornavirus, not with caliciviruses. Thus CrPV may be a picornavirus with a calicivirus-like genome organization. Different options for CrPV genome expression are discussed.  相似文献   

18.
Shen Q  Zhang W  Yang S  Cui L  Hua X 《Journal of virology》2012,86(12):7015-7016
Noroviruses (NoVs) are members of the family Caliciviridae and are emerging enteric pathogens of humans and animals. So far, porcine NoVs have been detected exclusively in fecal samples from adult swine without clinical signs. Here we report the genome sequence of a NoV strain isolated from piglets with diarrhea. Experimental infection of miniature pigs with this porcine NoV-positive fecal sample confirmed that this strain can cause diarrhea in piglets. A phylogenetic tree based on the predicted amino acid sequence of the complete capsid region showed that this strain is separate from known porcine GII strains (GII-11, GII-18, and GII-19), constituting the sole member of a new branch.  相似文献   

19.
The capsid protein of feline calicivirus (FCV) was expressed by using plasmids containing cytomegalovirus, simian virus 40, or T7 promoters. The strongest expression was achieved with the T7 promoter and coinfection with vaccinia virus expressing the T7 RNA polymerase (MVA/T7pol). The FCV precursor capsid protein was processed to the mature-size protein, and these proteins were assembled in to virus-like particles.  相似文献   

20.
Serologic survey for selected virus infections in polar bears at Svalbard   总被引:1,自引:0,他引:1  
Polar bears (Ursus maritimus) were chemically immobilized and sampled at Svalbard, Norway, and on the pack ice in the Barents Sea from late March to mid-May between 1990 and 1998. Plasma samples were tested for the presence of antibodies to canine distemper virus (CDV), calicivirus, phocid herpesvirus type 1 (PhHV-1), and rabies virus. A seroprevalence of 8% to CDV and 2% to calicivirus were found, whereas no antibodies were detected against PhHV-1 or rabies virus. This serologic survey indicates that polar bears in this region are exposed to morbillivirus and calicivirus, although the nature of these viruses and infections are unknown. Morbillivirus and calicivirus are potential pathogens in seals, but it is unknown whether they may cause health problems in polar bears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号