首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regeneration of the visual chromophore, 11-cis-retinal, is a critical step in restoring photoreceptors to their dark-adapted conditions. This regeneration process, called the retinoid cycle, takes place in the photoreceptor outer segments and the retinal pigment epithelium (RPE). Disabling mutations in nearly all of the retinoid cycle genes are linked to human conditions that cause congenital or progressive defects in vision. Several mouse models with disrupted genes related to this cycle contain abnormal fatty acid retinyl ester levels in the RPE. To investigate the mechanisms of retinyl ester accumulation, we generated single or double knockout mice lacking retinoid cycle genes. All-trans-retinyl esters accumulated in mice lacking RPE65, but they are reduced in double knockout mice also lacking opsin, suggesting a connection between visual pigment regeneration and the retinoid cycle. Only Rdh5-deficient mice accumulate cis-retinyl esters, regardless of the simultaneous disruption of RPE65, opsin, and prRDH. 13-cis-Retinoids are produced at higher levels when the flow of retinoid through the cycle was increased, and these esters are stored in specific structures called retinosomes. Most importantly, retinylamine, a specific and effective inhibitor of the 11-cis-retinol formation, also inhibits the production of 13-cis-retinyl esters. The data presented here support the idea that 13-cis-retinyl esters are formed through an aberrant enzymatic isomerization process.  相似文献   

2.
The visual (retinoid) cycle is a fundamental metabolic process in vertebrate retina responsible for production of 11-cis-retinal, the chromophore of rhodopsin and cone pigments. 11-cis-Retinal is bound to opsins, forming visual pigments, and when the resulting visual chromophore 11-cis-retinylidene is photoisomerized to all-trans-retinylidene, all-trans-retinal is released from these receptors. Toxic byproducts of the visual cycle formed from all-trans-retinal often are associated with lipofuscin deposits in the retinal pigmented epithelium (RPE), but it is not clear whether aberrant reactions of the visual cycle participate in RPE atrophy, leading to a rapid onset of retinopathy. Here we report that mice lacking both the ATP-binding cassette transporter 4 (Abca4) and enzyme retinol dehydrogenase 8 (Rdh8), proteins critical for all-trans-retinal clearance from photoreceptors, developed severe RPE/photoreceptor dystrophy at an early age. This phenotype includes lipofuscin, drusen, and basal laminar deposits, Bruch's membrane thickening, and choroidal neovascularization. Importantly, the severity of visual dysfunction and retinopathy was exacerbated by light but attenuated by treatment with retinylamine, a visual cycle inhibitor that slows the flow of all-trans-retinal through the visual cycle. These findings provide direct evidence that aberrant production of toxic condensation byproducts of the visual cycle in mice can lead to rapid, progressive retinal degeneration.  相似文献   

3.
Multiphoton excitation fluorescence microscopy (MPM) can image certain molecular processes in vivo. In the eye, fluorescent retinyl esters in subcellular structures called retinosomes mediate regeneration of the visual chromophore, 11-cis-retinal, by the visual cycle. But harmful fluorescent condensation products of retinoids also occur in the retina. We report that in wild-type mice, excitation with a wavelength of ~730 nm identified retinosomes in the retinal pigment epithelium, and excitation with a wavelength of ~910 nm revealed at least one additional retinal fluorophore. The latter fluorescence was absent in eyes of genetically modified mice lacking a functional visual cycle, but accentuated in eyes of older wild-type mice and mice with defective clearance of all-trans-retinal, an intermediate in the visual cycle. MPM, a noninvasive imaging modality that facilitates concurrent monitoring of retinosomes along with potentially harmful products in aging eyes, has the potential to detect early molecular changes due to age-related macular degeneration and other defects in retinoid metabolism.  相似文献   

4.
Overview of retinoid metabolism and function   总被引:13,自引:0,他引:13  
  相似文献   

5.
Photoisomerization of 11-cis-retinal to all-trans-retinal and reduction to all-trans-retinol occur in photoreceptor outer segments whereas enzymatic esterification of all-trans-retinol, isomerization to 11-cis-retinol, and oxidation to 11-cis-retinal occur in adjacent cells. The processes are linked into a visual cycle by intercellular diffusion of retinoids. Knowledge of the mechanistic aspects of the visual cycle is very limited. In this study, we utilize chemical analysis of visual cycle retinoids to assess physiological roles for components inferred from in vitro experiments and to understand why excised mouse eyes fail to regenerate their bleached visual pigment. Flash illumination of excised mouse eyes or eyecups, in which regeneration of rhodopsin does not occur, produced a block in the visual cycle after all-trans-retinal formation; constant illumination of eyecups produced a block in the cycle after all-trans-retinol formation; and constant illumination of whole excised eyes resulted in a block of the cycle after formation of all-trans-retinyl ester. These blocks emphasize the role of cellular metabolism in the visual cycle. Interphotoreceptor retinoid-binding protein (IRBP) has been postulated to play a role in intercellular retinoid transfer in the retina; however, the rates of recovery of 11-cis-retinal and of regeneration of rhodopsin in the dark in IRBP-/- mice were very similar to those found with wild-type (wt) mice. Thus, IRBP is necessary for photoreceptor survival but is not essential for a normal rate of visual pigment turnover. Arrestin forms a complex with activated rhodopsin, quenches its activity, and affects the release of all-trans-retinal in vitro. The rate of recovery of 11-cis-retinal in arrestin-/- mice was modestly delayed relative to wt, and the rate of rhodopsin recovery was approximately 80% of that observed with wt mice. Thus, the absence of arrestin appeared to have a minor effect on the kinetics of the visual cycle.  相似文献   

6.
The retinal G protein-coupled receptor (RGR) is a protein that structurally resembles visual pigments and other G protein-coupled receptors. RGR may play a role as a photoisomerase in the production of 11-cis-retinal, the chromophore of the visual pigments. As the proposed function of RGR, in a complex with 11-cis-retinol dehydrogenase (RDH5), is to regenerate 11-cis-retinal under light conditions and RDH5 is expected to function in the light-independent part of the retinoid cycle, we speculated that the simultaneous loss of function of both proteins should more severely affect the rhodopsin regeneration capacity. Here, we evaluated the role of RGR using rgr-/- single and rdh5-/-rgr-/- double knockout mice under a number of light conditions. The most striking phenotype of rgr-/- mice after a single flash of light includes light-dependent formation of 9-cis- and 13-cis-retinoid isomers. These isomers are not formed in wild-type mice because either all-trans-retinal is bound to RGR and protected from isomerization to 9-cis- or 13-cis-retinal or because RGR is able to eliminate these isomers directly or indirectly. After intense bleaching, a transient accumulation of all-trans-retinyl esters and an attenuated recovery of 11-cis-retinal were observed. Finally, even under conditions of prolonged light illumination, as investigated in vitro in biochemical assays or in vivo by electroretinogram (ERG) measurements, no evidence of catalytic-like photoisomerization-driven production of 11-cis-retinal could be attained. These and previous results suggest that RGR and RDH5 are likely to function in the retinoid cycle, although their role is not essential and regeneration of visual pigment is only mildly affected by the absence of both proteins in rod-dominated mice.  相似文献   

7.
Lecithin:retinol acyltransferase (LRAT) catalyzes the transfer of an acyl group from the sn-1 position of phosphatidylcholine to all-trans-retinol (vitamin A) and plays an essential role in the regeneration of visual chromophore as well as in the metabolism of vitamin A. Here we demonstrate that retinylamine (Ret-NH2), a potent and selective inhibitor of 11-cis-retinal biosynthesis (Golczak, M., Kuksa, V., Maeda, T., Moise, A. R., and Palczewski, K. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 8162-8167), is a substrate for LRAT. LRAT catalyzes the transfer of the acyl group onto Ret-NH2 leading to the formation of N-retinylpalmitamide, N-retinylstearamide, and N-retinylmyristamide with a ratio of 15:6:2, respectively. The presence of N-retinylamides was detected in vivo in mice supplemented with Ret-NH2. N-Retinylamides are thus the main metabolites of Ret-NH2 in the liver and the eye and can be mobilized by hydrolysis/deamidation back to Ret-NH2. Using two-photon microscopy and the intrinsic fluorescence of N-retinylamides, we showed that newly formed amides colocalize with the retinyl ester storage particles (retinosomes) in the retinal pigment epithelium. These observations provide new information concerning the substrate specificity of LRAT and explain the prolonged effect of Ret-NH2 on the rate of 11-cis-retinal recovery in vivo.  相似文献   

8.
In the vertebrate retina, the final step of visual chromophore production is the oxidation of 11-cis-retinol to 11-cis-retinal. This reaction is catalyzed by 11-cis-retinol dehydrogenases (11-cis-RDHs), prior to the chromophore rejoining with the visual pigment apo-proteins. The RDH5 gene encodes a dehydrogenase that is responsible for the majority of RDH activity. In humans, mutations in this gene are associated with fundus albipunctatus, a disease expressed by delayed dark adaptation of both cones and rods. In this report, an animal model for this disease, 11-cis-rdh-/- mice, was used to investigate the flow of retinoids after a bleach, and microsomal membranes from the retinal pigment epithelium of these mice were employed to characterize remaining enzymatic activities oxidizing 11-cis-retinol. Lack of 11-cis-RDH leads to an accumulation of cis-retinoids, particularly 13-cis-isomers. The analysis of 11-cis-rdh-/- mice showed that the RDH(s) responsible for the production of 11-cis-retinal displays NADP-dependent specificity toward 9-cis- and 11-cis-retinal but not 13-cis-retinal. The lack of 13-cis-RDH activity could be a reason why 13-cis-isomers accumulate in the retinal pigment epithelium of 11-cis-rdh-/- mice. Furthermore, our results provide detailed characterization of a mouse model for the human disease fundus albipunctatus and emphasize the importance of 11-cis-RDH in keeping the balance between different components of the retinoid cycle.  相似文献   

9.
Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.  相似文献   

10.
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.  相似文献   

11.
It has been proposed that cis-retinol dehydrogenase (cRDH) acts within the body to catalyze the oxidation of 9-cis-retinol, an oxidative step needed for 9-cis-retinoic acid synthesis, the oxidation of 11-cis-retinol [an oxidative step needed for 11-cis-retinal (visual chromophore) synthesis], and 3 alpha-hydroxysteroid transformations. To assess in vivo the physiological importance of each of these proposed actions of cRDH, we generated cRDH-deficient (cRDH-/-) mice. The cRDH-/- mice reproduce normally and appear to be normal. However, the mutant mice do have a mild visual phenotype of impaired dark adaptation. This phenotype is evidenced by electroretinagram analysis of the mice and by biochemical measures of eye levels of retinoid intermediates during recovery from an intense photobleach. Although it is thought that cRDH is expressed in the eye almost solely in retinal pigment epithelial cells, we detected cRDH expression in other retinal cells, including ganglion cells, amacrine cells, horizontal cells, and the inner segments of the rod photoreceptor cells. Aside from the eye, there are no marked differences in retinoid levels in other tissues throughout the body for cRDH-/- compared with cRDH+/+ mice. Moreover, we did not detect any non-visual phenotypic changes for cRDH-/- mice, suggesting that these mice do not have problems in metabolizing 3 alpha-hydroxysteroids.Thus, cRDH may act essentially in the visual cycle but is redundant for catalyzing 9-cis-retinoic acid formation and 3 alpha-hydroxysteroid metabolism.  相似文献   

12.
Rhodopsin activation is measured by the early receptor current (ERC), a conformation-associated charge motion, in human embryonic kidney cells (HEK293S) expressing opsins. After rhodopsin bleaching in cells loaded with 11-cis-retinal, ERC signals recover in minutes and recurrently over a period of hours by simple dark adaptation, with no added chromophore. The purpose of this study is to investigate the source of ERC signal recovery in these cells. Giant HEK293S cells expressing normal wild-type (WT)-human rod opsin (HEK293S) were regenerated by solubilized 11-cis-retinal, all-trans-retinal, or Vitamin A in darkness. ERCs were elicited by flash photolysis and measured by whole-cell recording. Visible flashes initially elicit bimodal (R(1), R(2)) ERC signals in WT-HEK293S cells loaded with 11-cis-retinal for 40 min or overnight. In contrast, cells regenerated for 40 min with all-trans-retinal or Vitamin A had negative ERCs (R(1)-like) or none at all. After these were placed in the dark overnight, ERCs with outward R(2) signals were recorded the following day. This indicates conversion of loaded Vitamin A or all-trans-retinal into cis-retinaldehyde that regenerated ground-state pigment. 4-butylaniline, an inhibitor of the mammalian retinoid cycle, reversibly suppressed recovery of the outward R(2) component from Vitamin A and 11-cis-retinal-loaded cells. These physiological findings are evidence for the presence of intrinsic retinoid processing machinery in WT-HEK293S cells similar to what occurs in the mammalian eye.  相似文献   

13.
The oxidation of 11-cis-retinol to 11-cis-retinal in the retinal pigment epithelium (RPE) represents the final step in a metabolic cycle that culminates in visual pigment regeneration. Retinol dehydrogenase 5 (RDH5) is responsible for a majority of the 11-cis-RDH activity in the RPE, but the formation of 11-cis-retinal in rdh5-/- mice suggests another enzyme(s) is present. We have previously shown that RDH11 is also highly expressed in RPE cells and has dual specificity for both cis- and trans-retinoid substrates. To investigate the role of RDH11 in the retinoid cycle, we generated rdh11-/- and rdh5-/-rdh11-/- mice and examined their electrophysiological responses to various intensities of illumination and during dark adaptation. Retinoid profiles of darkadapted rdh11-/- mice did not show significant differences compared with wild-type mice, whereas an accumulation of cis-esters was detected in rdh5-/- and rdh5-/-rdh11-/- mice. Following light stimulation, 73% more cis-retinyl esters were stored in rdh5-/-rdh11-/- mice compared with rdh5-/- mice. Single-flash ERGs of rdh11-/- showed normal responses under dark- and light-adapted conditions, but exhibited delayed dark adaptation following high bleaching levels. Double knockout mice also had normal ERG responses in dark- and light-adapted conditions, but had a further delay in dark adaptation relative to either rdh11-/- or rdh5-/- mice. Taken together, these results suggest that RDH11 has a measurable role in regenerating the visual pigment by complementing RDH5 as an 11-cis-RDH in RPE cells, and indicate that an additional unidentified enzyme(s) oxidizes 11-cis-retinol or that an alternative pathway contributes to the retinoid cycle.  相似文献   

14.
Rhodopsin bears 11-cis-retinal covalently bound by a protonated Schiff base linkage. 11-cis/all-trans isomerization, induced by absorption of green light, leads to active metarhodopsin II, in which the Schiff base is intact but deprotonated. The subsequent metabolic retinoid cycle starts with Schiff base hydrolysis and release of photolyzed all-trans-retinal from the active site and ends with the uptake of fresh 11-cis-retinal. To probe chromophore-protein interaction in the active state, we have studied the effects of blue light absorption on metarhodopsin II using infrared and time-resolved UV-visible spectroscopy. A light-induced shortcut of the retinoid cycle, as it occurs in other retinal proteins, is not observed. The predominantly formed illumination product contains all-trans-retinal, although the spectra reflect Schiff base reprotonation and protein deactivation. By its kinetics of formation and decay, its low temperature photointermediates, and its interaction with transducin, this illumination product is identified as metarhodopsin III. This species is known to bind all-trans-retinal via a reprotonated Schiff base and forms normally in parallel to retinal release. We find that its generation by light absorption is only achieved when starting from active metarhodopsin II and is not found with any of its precursors, including metarhodopsin I. Based on the finding of others that metarhodopsin III binds retinal in all-trans-C(15)-syn configuration, we can now conclude that light-induced formation of metarhodopsin III operates by Schiff base isomerization ("second switch"). Our reaction model assumes steric hindrance of the retinal polyene chain in the active conformation, thus preventing central double bond isomerization.  相似文献   

15.
The retinoid cycle is a recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. Photoreceptor-specific retinol dehydrogenase (prRDH) catalyzes reduction of all-trans-retinal to all-trans-retinol and is thought to be a key enzyme in the retinoid cycle. We disrupted mouse prRDH (human gene symbol RDH8) gene expression by targeted recombination and generated a homozygous prRDH knock-out (prRDH-/-) mouse. Histological analysis and electron microscopy of retinas from 6- to 8-week-old prRDH-/- mice revealed no structural differences of the photoreceptors or inner retina. For brief light exposure, absence of prRDH did not affect the rate of 11-cis-retinal regeneration or the decay of Meta II, the activated form of rhodopsin. Absence of prRDH, however, caused significant accumulation of all-trans-retinal following exposure to bright lights and delayed recovery of rod function as measured by electroretinograms and single cell recordings. Retention of all-trans-retinal resulted in slight overproduction of A2E, a condensation product of all-trans-retinal and phosphatidylethanolamine. We conclude that prRDH is an enzyme that catalyzes reduction of all-trans-retinal in the rod outer segment, most noticeably at higher light intensities and prolonged illumination, but is not an essential enzyme of the retinoid cycle.  相似文献   

16.
17.
The retinoid visual cycle is an ocular retinoid metabolism specifically dedicated to support vertebrate vision. The visual cycle serves not only to generate light-sensitive visual chromophore 11-cis-retinal, but also to clear toxic byproducts of normal visual cycle (i.e. all-trans-retinal and its condensation products) from the retina, ensuring both the visual function and the retinal health. Unfortunately, various conditions including genetic predisposition, environment and aging may attribute to a functional decline of the all-trans-retinal clearance. To combat all-trans-retinal mediated retinal degeneration, we sought to slow down the retinoid influx from the RPE by inhibiting the visual cycle with a small molecule. The present study describes identification of CU239, a novel non-retinoid inhibitor of RPE65, a key enzyme in the visual cycle. Our data demonstrated that CU239 selectively inhibited isomerase activity of RPE65, with IC50 of 6 μM. Further, our results indicated that CU239 inhibited RPE65 via competition with its substrate all-trans-retinyl ester. Mice with systemic injection of CU239 exhibited delayed chromophore regeneration after light bleach, and conferred a partial protection of the retina against injury from high intensity light. Taken together, CU239 is a potent visual cycle modulator and may have a therapeutic potential for retinal degeneration.  相似文献   

18.
Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Müller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein. Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 15-20% of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state 19F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies.  相似文献   

19.
Recovery of visual functions in a mouse model of Leber congenital amaurosis   总被引:5,自引:0,他引:5  
The visual process is initiated by the photoisomerization of 11-cis-retinal to all-trans-retinal. For sustained vision the 11-cis-chromophore must be regenerated from all-trans-retinal. This requires RPE65, a dominant retinal pigment epithelium protein. Disruption of the RPE65 gene results in massive accumulation of all-trans-retinyl esters in the retinal pigment epithelium, lack of 11-cis-retinal and therefore rhodopsin, and ultimately blindness. We reported previously (Van Hooser, J. P., Aleman, T. S., He, Y. G., Cideciyan, A. V., Kuksa, V., Pittler, S. J., Stone, E. M., Jacobson, S. G., and Palczewski, K. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8623-8628) that in Rpe65-/- mice, oral administration of 9-cis-retinal generated isorhodopsin, a rod photopigment, and restored light sensitivity to the electroretinogram. Here, we provide evidence that early intervention by 9-cis-retinal administration significantly attenuated retinal ester accumulation and supported rod retinal function for more than 6 months post-treatment. In single cell recordings rod light sensitivity was shown to be a function of the amount of regenerated isorhodopsin; high doses restored rod responses with normal sensitivity and kinetics. Highly attenuated residual rod function was observed in untreated Rpe65-/- mice. This rod function is likely a consequence of low efficiency production of 11-cis-retinal by photo-conversion of all-trans-retinal in the retina as demonstrated by retinoid analysis. These studies show that pharmacological intervention produces long lasting preservation of visual function in dark-reared Rpe65-/- mice and may be a useful therapeutic strategy in recovering vision in humans diagnosed with Leber congenital amaurosis caused by mutations in the RPE65 gene, an inherited group of early onset blinding and retinal degenerations.  相似文献   

20.
Levels of many hydrophobic cellular substances are tightly regulated because of their potential cytotoxicity. These compounds tend to self-aggregate in cytoplasmic storage depots termed lipid droplets/bodies that have well defined structures that contain additional components, including cholesterol and various proteins. Hydrophobic substances in these structures become mobilized in a specific and regulated manner as dictated by cellular requirements. Retinal pigmented epithelial cells in the eye produce retinyl ester-containing lipid droplets named retinosomes. These esters are mobilized to replenish the visual chromophore, 11-cis-retinal, and their storage ensures proper visual function despite fluctuations in dietary vitamin A intake. But it remains unclear whether retinosomes are structures specific to the eye or similar to lipid droplets in other organs/tissues that contain substances other than retinyl esters. Thus, we initially investigated the production of these lipid droplets in experimental cell lines expressing lecithin:retinol acyltransferase, a key enzyme involved in formation of retinyl ester-containing retinosomes from all-trans-retinol. We found that retinosomes and oleate-derived lipid droplets form and co-localize concomitantly, indicating their intrinsic structural similarities. Next, we isolated native retinosomes from bovine retinal pigmented epithelium and found that their protein and hydrophobic small molecular constituents were similar to those of lipid droplets reported for other experimental cell lines and tissues. These unexpected findings suggest a common mechanism for lipid droplet formation that exhibits broad chemical specificity for the hydrophobic substances being stored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号