首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinitis pigmentosa (RP) is a blinding retinal disease in which the photoreceptor cells degenerate. Mutations in the gene for retinitis pigmentosa GTPase regulator (RPGR) are a frequent cause of RP. The function of RPGR is not well understood, but it is thought to be a putative guanine nucleotide exchange factor for an unknown G protein. Ablation of the RPGR gene in mice suggested a role in maintaining the polarized distribution of opsin across the cilia. To investigate its function, we used a protein interaction screen to identify candidate proteins that may interact physiologically with RPGR. One such protein, designated RPGR-interacting protein (RPGRIP), is expressed specifically in rod and cone photoreceptors. It consists of an N-terminal region predicted to form coiled coil structures linked to a C-terminal tail that binds RPGR. In vivo, both proteins co-localize in the photoreceptor connecting cilia. RPGRIP is stably associated with the ciliary axoneme independent of RPGR and is resistant to extraction under conditions that partially solubilized other cytoskeletal components. When over-expressed in heterologous cell lines, RPGRIP appears in insoluble punctate and filamentous structures. These data suggest that RPGRIP is a structural component of the ciliary axoneme, and one of its functions is to anchor RPGR within the cilium. RPGRIP is the only protein known to localize specifically in the photoreceptor connecting cilium. As such, it is a candidate gene for human photoreceptor disease. The tissue-specific expression of RPGRIP explains why mutations in the ubiquitously expressed RPGR confer a photoreceptor-specific phenotype.  相似文献   

2.
The haploid germ cell-specific Tektin-t protein is a member of the Tektin family of proteins that form filaments in flagellar, ciliary, and axonemal microtubules. To investigate the physiological role of Tektin-t, we generated mice with a mutation in the tektin-t gene. The homozygous mutant males were infertile, while the females were fully fertile. Sperm morphology and function were abnormal, with frequent bending of the sperm flagella and marked defects in motility. In vitro fertilization assays showed that the defective spermatozoa were able to fertilize eggs. Electron microscopic examination showed that the dynein inner arm structure was disrupted in the sperm flagella of tektin-t-deficient mice. Furthermore, homozygous mutant mice had functionally defective tracheal cilia, as evidenced by altered dynein arm morphology. These results indicate that Tektin-t participates in dynein inner arm formation or attachment and that the loss of Tektin-t results in impaired motility of both flagella and cilia. Therefore, the tektin-t gene is one of the causal genes for immotile-cilium syndrome/primary ciliary dyskinesia.  相似文献   

3.
Dysfunction of primary cilia due to mutations in cilia-centrosomal proteins is associated with pleiotropic disorders. The primary (or sensory) cilium of photoreceptors mediates polarized trafficking of proteins for efficient phototransduction. Retinitis pigmentosa GTPase regulator (RPGR) is a cilia-centrosomal protein mutated in >70% of X-linked RP cases and 10%–20% of simplex RP males. Accumulating evidence indicates that RPGR may facilitate the orchestration of multiple ciliary protein complexes. Disruption of these complexes due to mutations in component proteins is an underlying cause of associated photoreceptor degeneration. Here, we highlight the recent developments in understanding the mechanism of cilia-dependent photoreceptor degeneration due to mutations in RPGR and RPGR-interacting proteins in severe genetic diseases, including retinitis pigmentosa, Leber congenital amaurosis (LCA), Joubert syndrome, and Senior-Loken syndrome, and explore the physiological relevance of photoreceptor ciliary protein complexes.  相似文献   

4.
Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene are the predominant cause of retinitis pigmentosa. RPGR plays a critical role as a scaffold protein in the regulation of protein trafficking from the basal body to the axoneme, where the cargoes are transported to the outer segments (OSs) of photoreceptors. This trafficking process is controlled directly by intraflagellar transport complexes and regulated by the RPGR protein complex, although the precise mechanisms have yet to be defined. We used an Rpgr conditional knockout (cko) mouse model to investigate the disease mechanisms during retinal degeneration and to evaluate the protective effects of tauroursodeoxycholic acid (TUDCA). Rhodopsin, cone opsins and transducin were mislocalized in Rpgr cko photoreceptors, while localization of NPHP4 to connecting cilia was absent, suggesting that RPGR is required for ciliary protein trafficking. Microglia were activated in advance of retinal degeneration in Rpgr cko mouse retinas. TUDCA treatment suppressed microglial activation and inflammation and prevented photoreceptor degeneration in Rpgr cko mice. Our data demonstrated that TUDCA has therapeutic potential for RPGR-associated RP patients.  相似文献   

5.
6.
Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.  相似文献   

7.
Motile cilia and flagella play critical roles in fluid clearance and cell motility, and dysfunction commonly results in the pediatric syndrome primary ciliary dyskinesia (PCD). CFAP221, also known as PCDP1, is required for ciliary and flagellar function in mice and Chlamydomonas reinhardtii, where it localizes to the C1d projection of the central microtubule apparatus and functions in a complex that regulates flagellar motility in a calcium-dependent manner. We demonstrate that the genes encoding the mouse homologues of the other C. reinhardtii C1d complex members are primarily expressed in motile ciliated tissues, suggesting a conserved function in mammalian motile cilia. The requirement for one of these C1d complex members, CFAP54, was identified in a mouse line with a gene-trapped allele. Homozygous mice have PCD characterized by hydrocephalus, male infertility, and mucus accumulation. The infertility results from defects in spermatogenesis. Motile cilia have a structural defect in the C1d projection, indicating that the C1d assembly mechanism requires CFAP54. This structural defect results in decreased ciliary beat frequency and perturbed cilia-driven flow. This study identifies a critical role for CFAP54 in proper assembly and function of mammalian cilia and flagella and establishes the gene-trapped allele as a new model of PCD.  相似文献   

8.
Ciliary function is essential for normal cellular activity in all species from simple protozoa upwards. In humans, ciliary dysmotility or complete immobility have been identified in autosomal recessive multisystemic diseases characterized by recurrent respiratory tract infections and male subfertility due to impaired sperm mobility. Linkage to human chromosome 19q13.3 has been published for some families but no candidate genes have been identified. We report the first identification of a mammalian homolog of a radial spokehead-like protein, with high homology to proteins of sea urchins and the protozoan Chlamydomonas reinhardtii, at the myotonic dystrophy-1 locus (chromosome19q13.3). In the lower organisms, these proteins are important in normal ciliary or flagellar action, including that of sea urchin spermatozoa. Expression of the mammalian homolog was detected in the adult testis. We suggest that this gene, which we have called Radial Spokehead-Like 1 (RSHL1), is a candidate gene for familial primary ciliary dyskinesia.  相似文献   

9.
To understand the mechanism regulating spermatozoa motility, it is important to investigate the mechanism regulating the conversion of microtubule sliding into flagellar bending. Therefore, we analyzed microtubule sliding and its conversion into flagellar bending using a demembranated spermatozoa model in which microtubule sliding and flagellar bending could be analyzed separately by treating the demembranated spermatozoa with and without dithiothreitol, respectively. Using this model, we examined the roles of cAMP and its target molecules in regulating flagellar bending and microtubule sliding. Although flagellar bending did not occur in the absence of cAMP, microtubule extrusion occurred without it, suggesting that cAMP is necessary for the conversion of microtubule sliding into flagellar bending, but not for microtubule sliding itself. The target of cAMP for regulating flagellar bending was not cAMP-dependent protein kinase (PKA), since flagellar bending was still observed in the spermatozoa treated with a PKA-specific inhibitor. Alternatively, the Epac/Rap pathway may be the target. Epac2 and Rap2 were detected in hamster spermatozoa using immunoblotting. Since Rap2 is a GTPase, we investigated the flagellar bending of demembranated spermatozoa treated with GTPgammaS. The treatment markedly increased the beat frequency and bending rate. These results suggest that cAMP activates the Epac/Rap pathway to regulate the conversion of microtubule sliding into flagellar bending.  相似文献   

10.
Defects in primary cilia result in human diseases known as ciliopathies. The retinitis pigmentosa GTPase regulator (RPGR), mutated in the most severe form of the eye disease, is located at the transition zone of the ciliary organelle. The RPGR‐interacting partner PDEδ is involved in trafficking of farnesylated ciliary cargo, but the significance of this interaction is unknown. The crystal structure of the propeller domain of RPGR shows the location of patient mutations and how they perturb the structure. The RPGR·PDEδ complex structure shows PDEδ on a highly conserved surface patch of RPGR. Biochemical experiments and structural considerations show that RPGR can bind with high affinity to cargo‐loaded PDEδ and exposes the Arl2/Arl3‐binding site on PDEδ. On the basis of these results, we propose a model where RPGR is acting as a scaffold protein recruiting cargo‐loaded PDEδ and Arl3 to release lipidated cargo into cilia.  相似文献   

11.
12.
Caudal epididymal spermatozoa of golden hamsters were incubated in capacitation medium. Their movement patterns changed as they became hyperactivated and underwent the acrosome reaction. To understand the basic mechanism by which changes in movement pattern are brought about, digital image analysis was carried out on the flagellar movements recorded with a video system. The degree of flagellar bending increased with incubation time, especially in the proximal midpiece. The hyperactivated spermatozoa had remarkably asymmetrical flagellar waves of large amplitude because either the bends in the same direction as the hook of the head (referred as the "pro-hook bend") or the bends in the opposite direction to the hook of the head (referred as the "anti-hook bend") extremely increased their curvature; whereas, the acrosome-reacted spermatozoa had relatively symmetrical flagellar waves of large amplitude because both the pro- and anti-hook bends remarkably increased their curvature. Beat frequency significantly decreased while wavelength of flagellar waves increased after hyperactivation and further after the acrosome reaction. These results suggest that both extreme pro- and anti-hook bends are essential in the acrosome-reacted spermatozoa even though beat frequency decreased markedly.  相似文献   

13.
We mapped a new X-linked recessive atrophic macular degeneration locus to Xp21.1-p11.4 and show allelic involvement of the gene RPGR, which normally causes severe peripheral retinal degeneration leading to global blindness. Ten affected males whom we examined had primarily macular atrophy causing progressive loss of visual acuity with minimal peripheral visual impairment. One additional male showed extensive macular degeneration plus peripheral loss of retinal pigment epithelium and choriocapillaries. Full-field electroretinograms (ERGs) showed normal cone and rod responses in some affected males despite advanced macular degeneration, emphasizing the dissociation of atrophic macular degeneration from generalized cone degenerations, including X-linked cone dystrophy (COD1). The RPGR gene nonsense mutation G-->T at open reading frame (ORF)15+1164 cosegregated with the disease and may create a donor splice site. Identification of an RPGR mutation in atrophic maculardegeneration expands the phenotypic range associated with this gene and provides a new tool for the dissection of the relationship between clinically different retinal pathologies.  相似文献   

14.
The juvenile visceral steatosis mutant mice serve as an animal model of primary carnitine deficiency, classified as the sudden infant death syndrome. The defect in carnitine uptake was recently found to be due to a defect in the carnitine transporter gene. We herein report, for the first time, the characteristics of epididymal dysfunction in juvenile visceral steatosis mice. At 8-9 weeks of age, the epididymis was deformed and weight was significantly increased. Histologically, the duct of the proximal epididymis was dilated due to the accumulation of an unusually high level of spermatozoa. Spermatozoa were extravasated from the epididymal duct into the stroma. In contrast, the duct of the distal epididymis was constricted and contained no spermatozoa. Thus, the epididymal disorder causes obstructive azoospermia, leading to infertility.  相似文献   

15.
16.
Immotile spermatozoa from the caput epididymidis become progressively motile when incubated in medium containing theophylline, seminal plasma, and albumin. We previously reported that under these incubation conditions the spermatozoa induced to acquire motility exhibited a marked flagellar angularity, with the sperm head or midpiece bent 90-180 degrees towards the tail. In addition, we demonstrated that sperm flagellar bending did not occur when the sulfhydryl oxidant diamide was added to the motility induction medium. In the present study, we examined further the effect of sulfhydryl oxidation on the morphology and sulfhydryl content of immature caput spermatozoa induced to acquire motility in vitro. We found that flagellar bending was prevented and sperm flagellar straightness was maintained in a dose-dependent manner by diamide. Moreover, flow cytometric analysis of caput sperm sulfhydryls using the sulfhydryl reagent monobromobimane (mBBr) revealed that 1) diamide oxidizes caput sperm sulfhydryls, and 2) less than 15% of the total reactive sperm sulfhydryls were oxidized at diamide concentrations capable of preventing sperm angulation. Sodium tetrathionate (NaTT), another sulfhydryl oxidant, and hamster cauda epididymal fluid (CEF) containing sulfhydryl oxidase enzyme activity also maintained flagellar straightness in induced caput spermatozoa and oxidized sperm sulfhydryls. The flagellar straightness in caput spermatozoa treated with sulfhydryl oxidants, however, was temporary; with extended incubation, diamide- or CEF-treated spermatozoa exhibited flagellar bending. Additional studies showed that the flagellar straightness observed in sulfhydryl-oxidized spermatozoa was sustained when nitrofurantoin, an inhibitor of glutathione reductase, was included in the induction medium. Flow cytometric analysis of nitrofurantoin-treated spermatozoa showed that nitrofurantoin maintained the sperm disulfides formed by diamide and prevented the reduction of sperm disulfides back to sulfhydryls. Taken together, these studies demonstrate the significance of sulfhydryl oxidation in maintaining the morphology of immature caput epididymal spermatozoa induced to acquire motility in vitro and suggest that sulfhydryl oxidation may be important in the development of motility during sperm epididymal maturation in vivo.  相似文献   

17.
18.
Flagellar movement of human spermatozoa held by their heads with a micropipette was recorded by means of a video-strobe system. Spermatozoa were studied in normal Hanks' solution, Hanks' solution with increased viscosity, cervical mucus, and hyaluronic acid. When flagellar movement in normal Hanks' solution was observed from the direction parallel to the beating plane, segments of the flagellum in focus did not lie on a straight line but on two diverging dashed lines. The distance between the two dashed lines was about 20% of the bend amplitude in the major beating plane. These observations indicate that flagellar beating of human spermatozoa in normal Hanks' solution is not planar. In contrast, segments of the flagellum in focus lay on a straight line when the spermatozoa were observed in Hanks' solution with increased viscosity, cervical mucus, or hyaluronic acid. In normal Hanks' solution, free swimming spermatozoa rotated constantly around their longitudinal axes with a frequency similar to the beat frequency, whereas little or no rotation of spermatozoa occurred in Hanks' solution with increased viscosity, in cervical mucus, or in hyaluronic acid. We conclude that human spermatozoa in normal Hanks' solution beat with a conical helical waveform having an elliptical cross section, the semiaxes of which have a ratio of 0.2. The three-dimensional geometry of the flagellar movement is responsible for the rotation of the sperm around their longitudinal axes.  相似文献   

19.
Laparoscopic sperm recovery from the pouch of Douglas and tubal fimbriae was performed in 64 infertile couples. Spermatozoa were recovered from 16/35 couples investigated after AIH, and from 13/29 couples post coitum. The method of insemination had no effect on the result, which was positive in 45.3% of all couples, although AIH did result in significantly larger numbers of peritoneal spermatozoa. The number of peritoneal spermatozoa did not show any direct correlation with the number inseminated, but there were reductions along the tract of 5.83 (+/- 1.4 s.d.) orders of magnitude for total sperm count, and 5.52 (+/- 1.21 s.d.) for the number of motile spermatozoa. Only sperm motility had a significant influence on the success of sperm transport; spermatozoa were recovered from patients with sperm densities as low as 3.0 and 3.5 x 10(6)/ml, but with 56 and 44% motile spermatozoa. No influence of cycle day within the range +/- 4 days of ovulation on sperm transport was found. In 45 couples, routine semen analyses were apparently completely normal, but the incidence of sperm recovery was still only 49% (22/45), suggesting that a failure of sperm transport may have been a significant causative factor in their infertility.  相似文献   

20.
A group of ten healthy fertile adult male bonnet monkeys were actively immunized using procedures acceptable for human use with pure follicle-stimulating hormone (oFSH) isolated from sheep pituitaries. The vaccine elicited an immunogenic response in all ten monkeys; the antibody-binding capacity, determined by Scatchard analysis, varied from 3 to 18 micrograms oFSH ml-1, the binding affinity ranging from 0.13 to 2.0 x 10(10) mol-1. A substantial population of antibodies against oFSH crossreacted with 125I-labelled human (h) FSH, used here as a representative ligand of primate FSH. The bioneutralization activity of the antisera assessed by a specific bioassay in vitro, when the antibody titre was high, was 6.9 +/- 0.18 micrograms hFSH ml-1. Immunization for 4.7-5.7 years did not affect the health and libido of the animals. Concentration of testosterone in serum remained normal throughout the study, but, within 150 days of immunization, there was a marked decrease (75-100%) in the number of spermatozoa in seminal ejaculates. Oligospermic status interspersed with azoospermia was maintained by periodic boosting. The fertility of these animals was monitored between 6 months and 2 years after primary immunization. All the ten animals proved infertile in repeated mating experiments with females of proven fertility. After stopping booster injections, nine of ten animals regained fertility, but the time taken for this depended upon the rate of decline of antibody titres. Re-boosting these monkeys with 100 micrograms oFSH after confirming that recovery had occurred revealed prompt increases in antibody titres followed once again by onset of oligo-azoospermia and infertility, underscoring the specificity of immunization effect. The immunized monkeys, apart from being acutely oligospermic, ejaculated spermatozoa that were markedly deficient in key acrosomal enzymes, such as acrosin and hyaluronidase, and motility as well as in their ability to penetrate a gel in vitro, suggesting that the infertility observed was due to gross reductions in the numbers of spermatozoa that could effectively interact with the oocyte and cause successful fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号