首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide-specific phospholipase C (PI-PLC) is a key signal transducing enzyme which generates the second messengers inositol trisphosphate and diacylglycerol in mammalian cells. A cDNA clone (PI-PLC1) encoding a phosphoinositide-specific phospholipase C was isolated from soybean by screening a cDNA expression library using an anti-(plasma membrane) serum. Genomic DNA gel blot analysis suggested that the corresponding gene is a member of a multigene family. The deduced amino acid sequence of the soybean PI-PLC1 isozyme contains the conserved X and Y regions, found in other PI-PLCs. It is closely related to mammalian δ-type PI-PLCs, Dictyostelium discoideum PI-PLC and yeast PI-PLC1 in terms of the arrangement of the conserved region. Unlike mammalian δ-type PI-PLCs and yeast PI-PLC1, the putative Ca2+-binding site of the soybean PI-PLC1 is located in the region spanning the X and Y domains, and the N-terminal region is truncated. FLAG epitope-tagged PI-PLC1 fusion protein purified from transgenic tobacco plants showed phosphoinositide-specific phospholipase C activity. Heterologous expression of the soybean PI-PLC1 cDNA in a yeast PI-PLC1 deletion mutant complemented the lethality phenotype of haploid PI-PLC1 disruptants. Immunoblot analysis of the cell fractions prepared from transgenic tobacco plants over-expressing the FLAG epitope-tagged PI-PLC1 fusion protein indicated that the protein encoded by the PI-PLC1 cDNA was localized in the cytosol and plasma membrane.  相似文献   

2.
The canonical Gα subunit of the heterotrimeric G protein complex from wheat (Triticum aestivum), GA3, and the calcium-binding protein, Clo3, were revealed to interact both in vivo and in vitro and Clo3 was shown to enhance the GTPase activity of GA3. Clo3 is a member of the caleosin gene family in wheat with a single EF-hand domain and is induced during cold acclimation. Bimolecular Fluorescent Complementation (BiFC) was used to localize the interaction between Clo3 and GA3 to the plasma membrane (PM). Even though heterotrimeric G-protein signaling and Ca2? signaling have both been shown to play a role in the response to environmental stresses in plants, little is known about the interaction between calcium-binding proteins and Gα. The GAP activity of Clo3 towards GA3 suggests it may play a role in the inactivation of GA3 as part of the stress response in plants. GA3 was also shown to interact with the phosphoinositide-specific phospholipase C, PI-PLC1, not only in the PM but also in the endoplasmic reticulum (ER). Surprisingly, Clo3 was also shown to interact with PI-PLC1 in the PM and ER. In vitro analysis of the protein-protein interaction showed that the interaction of Clo3 with GA3 and PI-PLC1 is enhanced by high Ca2? levels. Three-way affinity characterizations with GA3, Clo3 and PI-PLC1 showed the interaction with Clo3 to be competitive, which suggests that Clo3 may play a role in the Ca2?-triggered feedback regulation of both GA3 and PI-PLC1. This hypothesis was further supported by the demonstration that Clo3 has GAP activity with GA3.  相似文献   

3.
DNA unwinding of autonomously replicating sequence 1 (ARS1) from the yeast Saccharomyces cerevisiae was investigated. When a negatively supercoiled plasmid DNA containing ARS1 was digested with single-strand-specific mung bean nuclease, a discrete region in the vector DNA was preferentially digested. The regions containing the core consensus A domain and the 3'-flanking B domain of ARS1 were weakly digested. When the DNA was incubated with the multisubunit single-stranded DNA-binding protein (SSB, also called RPA [replication protein A]) from human and yeast cells prior to mung bean nuclease digestion, the cleavage in the A and B domains was greatly increased. Furthermore, a region corresponding to the 5'-flanking C domain of ARS1 was digested. These results indicate that three domains of ARS1, each of which is important for replication in yeast cells, closely correspond to the regions where the DNA duplex is easily unwound by torsional stress. SSB may stimulate the unwinding of the ARS1 region by its preferential binding to the destabilized three domains. Mung bean nuclease digestion of the substitution mutants with mutations of ARS1 (Y. Marahrens and B. Stillman, Science 255:817-823, 1992) revealed that the sequences in the B2 and A elements are responsible for the unwinding of the B domain and the region containing the A domain, respectively.  相似文献   

4.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

5.
Otterhag L  Sommarin M  Pical C 《FEBS letters》2001,497(2-3):165-170
Phosphoinositide-specific phospholipase C's (PI-PLCs) are ubiquitous in eukaryotes, from plants to animals, and catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate into the two second messengers inositol 1,4,5-trisphosphate and diacylglycerol. In animals, four distinct subfamilies of PI-PLCs have been identified, and the three-dimensional structure of one rat isozyme, PLC-delta1, determined. Plants appear to contain only one gene family encoding PI-PLCs. The catalytic properties of plant PI-PLCs are very similar to those of animal enzymes. However, very little is known about the regulation of plant PI-PLCs. All plant PI-PLCs comprise three domains, X, Y and C2, which are also conserved in isoforms from animals and yeast. We here show that one PI-PLC isozyme from Arabidopsis thaliana, AtPLC2, is predominantly localized in the plasma membrane, and that the conserved N-terminal domain may represent an EF-hand domain that is required for catalytic activity but not for lipid binding.  相似文献   

6.
A postulated role of the CN-resistant alternative respiratory pathway in plants is the maintenance of mitochondrial electron transport at low temperatures that would otherwise inhibit the main phosphorylating pathway and prevent the formation of toxic reactive oxygen species. This role is supported by the observation that alternative oxidase protein levels often increase when plants are subjected to growth at low temperatures. We used oxygen isotope fractionation to measure the distribution of electrons between the main and alternative pathways in mung bean (Vigna radiata) and soybean (Glycine max) following growth at low temperature. The amount of alternative oxidase protein in mung bean grown at 19°C increased over 2-fold in both hypocotyls and leaves compared with plants grown at 28°C but was unchanged in soybean cotyledons grown at 14°C compared with plants grown at 28°C. When the short-term response of tissue respiration was measured over the temperature range of 35°C to 9°C, decreases in the activities of both main and alternative pathway respiration were observed regardless of the growth temperature, and the relative partitioning of electrons to the alternative pathway generally decreased as the temperature was lowered. However, cold-grown mung bean plants that up-regulated the level of alternative oxidase protein maintained a greater electron partitioning to the alternative oxidase when measured at temperatures below 19°C supporting a role for the alternative pathway in response to low temperatures in mung bean. This response was not observed in soybean cotyledons, in which high levels of alternative pathway activity were seen at both high and low temperatures.  相似文献   

7.
8.
Nitric oxide (NO) is an important signaling molecule in plants. The present study aims to investigate the downstream signaling pathways of NO in plants using a proteomic approach. Phaseolus aureus (mung bean) leaf was treated with sodium nitroprusside (SNP), which releases nitric oxide in the form of nitrosonium cation (NO+) upon light irradiation. Changes in protein expression profiles of the SNP treated mung bean leaf were analyzed by two-dimensional gel electrophoresis (2-DE). Comparison of 2-DE electropherograms revealed seven down-regulated and two up-regulated proteins after treatment with 0.5 mM SNP for 6 h. The identities of these proteins were analyzed by a combination of peptide mass fingerprinting and post-source decay using a matrix-assisted-laser-desorption-ionisation-time-of-flight (MALDI-TOF) mass spectrometer. Six out of these nine proteins found are involved in either photosynthesis or cellular metabolism. We have taken our investigation further by studying the effect of NO+ on glucose contents in mung bean leaves. Our results clearly demonstrated that NO+ rapidly and drastically decrease the amount of glucose in mung bean leaves. Moreover, four out of nine of these proteins are chloroplastic isoforms. These results suggested that chloroplasts might be one of the main sub-cellular targets of NO in plants.  相似文献   

9.
Crop production in red soil areas may be limited by Al toxicity. A possible alternative to ameliorate Al toxicity is the application of such organic manure as crop straw and animal manure. A pot experiment was conducted to investigate the effects of organic materials on the alleviation of Al toxicity in acid red soil. Ground wheat straw, pig manure or CaCO3 were mixed with the soil and incubated, at 85% of water holding capacity and 25 degrees C, for 8 weeks. After the incubation, 14 seedlings of mung bean (Phaseolus aures Roxb) were allowed to grow for 12 days. Results showed that application of organic material or CaCO3 increased soil pH and decreased soil monomeric inorganic Al concentrations. Growth of mung bean seedling was improved sustantially by the application of organic material or CaCO3. Pig manure or wheat straw was more effective in ameliorating Al toxicity than was CaCO3. Mung bean plants receiving pig manure or wheat straw contained relatively high concentrations of P, Ca and K in their leaves. It is suggested that the beneficial effect of organic manure on mung bean is likely due to decreasing concentrations of monomeric inorganic Al concentrations in soil solution and improvement of mineral nutrition.  相似文献   

10.
The increase in ATP and E.C. in the mung bean axes during imbibi- tion was accompanied by an increase in the rate of protein synthesis. When the axes were treated with 5×l0-5 M, and 5×10-4M 2,4-Dinitrophenol at the first 4 hours of imbibition respectively, the production of ATP was inhibited, and the E.C. value decreased; at the same time, the incorporation of 3H-leucine into the trichloroacetic acidinsoluble protein was inhibited also. CCCP (1×10-5M and 1×10-4M) had a similar effect as DNP on mung bean axes. Incubated with 0.2 μg. ml-1 cycloheximide for 4 hours, the protein synthsized reduced by 69% compared to the control, the ATP and E. C. were slightly higher than the untreated one; while incubated with 1 μg and 5 μg cycloheximide, the protein synthesis almost stopped, the content of ATP decreased slightly, and E. C. value remained constant. When the mung bean axes were incubated with 1 μg, and 10 μg. ml-1 of actinomycin D for 4 hours, the protein synthesis was inhibited 23%, and 48% respectively. On the other hand, ATP, E. C. and the adenylate pool were not affected. These results showed that protein synthesis in mung bean axes during im- bibition was highly sensitive to the changes of ATP level and E. C. value. In contrast, adenylate pool was not affected by the actinomycin D.  相似文献   

11.
Indole-3-acetyl-L-aspartic acid (IAA-Asp) is a natural product in many plant species and plays many important roles in auxin metabolism and plant physiology. IAA-Asp hydrolysis activity is, therefore, believed to affect plant physiology through changes in IAA metabolism in plants. We applied a newly discovered technique, arginine-rich intracellular delivery (AID), to deliver a bacterial IAA-Asp hydrolase into cells of mung bean (Vigna radiata) seeds and measured its effects on mung bean seed germination. IAA-Asp hydrolase inhibited seed germination about 12 h after the enzyme was delivered into cells of mung bean seeds both covalently and noncovalently. Mung bean seed germination was delayed by 36 h when the enzyme protein was noncovalently attached to the AID peptide and longer than 60 h when the enzyme protein was covalently attached to the AID peptide. Root elongation of mung bean plants was inhibited as much as 90% or 80%, respectively, when the IAA-Asp hydrolase was delivered with the AID peptide by covalent or noncovalent association. Further thin-layer chromatography analysis of plant extracts indicated that the levels of IAA increased about 12 h after treatment and reached their peak at 24 h. This result suggests that IAA-Asp hydrolase may increase IAA levels and inhibit seed germination of mung bean plants and that the AID peptide is a new, rapid, and efficient experimental tool to study the in vivo activity of enzymes of interest in plant cells.  相似文献   

12.
13.
经10℃低温胁迫后,绿豆下胚轴MDA含量以及sOD、POD和CAT活性均极显著(P<0.01)升高,而豌豆下胚轴细胞中sOD活性极显著(P<0.01)上升;绿豆下胚轴细胞内的质体过量积累淀粉粒,豌豆下胚轴内的质体却无此现象,呈现各种形态,其中以哑铃形最为常见;在绿豆和豌豆中均观察到中央大液泡被分割成小液泡,线粒体数量增加、出现聚集现象,且线粒体向质体和内质网靠拢.从上述结果看,10℃低温对绿豆下胚轴细胞产生可逆的损伤,而对豌豆没有显著伤害,还能提高它的耐寒水平.  相似文献   

14.
A Ca2+-dependent phosphoinositide-specific phospholipase C (PI-PLC) activity has been characterized in the microsomal fraction of Digitaria sanguinalis mesophyll cell protoplasts. Microsomal PI-PLC was found to be inhibited in vitro by a mammalian anti-PLC-delta1 antibody and by the aminosteroide U-73122, an inhibitor of PI-PLC activity in animal cells. In Western blot experiments, the antibody recognized an 85 kDa protein in both microsomal protein extracts from mesophyll protoplasts and rat brain protein extracts containing the authentic enzyme. The involvement of the microsomal PI-PLC in the light-dependent transduction pathway leading to the phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) was investigated in D. sanguinalis protoplasts. A transient increase in the PI-PLC reaction product inositol-1,4,5-trisphosphate (Ins(1,4, 5)P3) was observed in situ during early induction of the C4 PEPC phosphorylation cascade. U-73122, but not the inactive analogue U-73343, efficiently blocked the transient accumulation of Ins(1,4, 5)P3, and both the increase in C4 PEPC kinase activity and C4 PEPC phosphorylation in illuminated and weak base-treated protoplasts. Taken together, these data suggest that PI-PLC-based signalling is a committed step in the cascade controlling the regulation of C4 PEPC phosphorylation in C4 leaves.  相似文献   

15.
Mung bean plants (Wilczek) accumulate increasingly greater amounts of buffer-extractable copper in both their shoots and roots when grown in liquid medium containing greater than 2 micrograms per milliliter copper (31.4 micromolar) as cupric sulfate. This increase in soluble copper is accompanied by an increase in the relative amount of low molecular weight (7,000 to 20,000) macromolecular-bound copper and a decrease in the relative amount of high molecular weight (greater than 20,000) copper. The major low molecular weight copper protein has been isolated from copper-intoxicated mung bean plants by a combination of ammonium sulfate fractionation, gel filtration, and ion exchange chromatography. It was identified as mung bean plastocyanin on the basis of its molecular weight, optical behavior, and amino acid composition. No evidence was found for a low molecular weight copper-binding protein corresponding to mammalian thionein or chelatin.  相似文献   

16.
Phomopsis sp. XP-8 is an endophytic fungus that has the ability to produce pinoresinol diglucoside (PDG) in vitro and thus has potential application for the biosynthesis of PDG independent of plants. When cultivated in mung bean medium, PDG production was significantly improved and pinoresinol monoglucoside (PMG) and pinoresinol (Pin) were also found in the culture medium. In this experiment, starch, protein, and polysaccharides were isolated from mung beans and separately used as the sole substrate in order to explore the mechanism of fermentation and identify the major substrates that attributed to the biotransformation of PDG, PMG, and Pin. The production of PDG, PMG, and Pin was monitored using high-performance liquid chromatography (HPLC) and confirmed using HPLC-MS. Activities of related enzymes, including phenylalanine ammonia-lyase (PAL), trans-cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL) were analyzed and tracked during the cultivation. The reaction system contained the compounds isolated from mung bean in the designed amount. Accumulation of phenylalanine, cinnamic acid, p-coumaric acid, PDG, PMG, and Pin and the activities of PAL, C4H, and 4CL were measured during the bioconversion. PMG was found only when mung bean polysaccharide was analyzed, while production of PDG and Pin were found when both polysaccharide and starch were analyzed. After examining the monosaccharide composition of the mung bean polysaccharide and the effect of the different monosaccharides had on the production of PMG, PDG, and Pin, galactose in mung bean polysaccharide proved to be the major factor that stimulates the production of PMG.  相似文献   

17.
以西南地区具有代表性的16种绿肥植物为受体材料,采用培养皿药膜法研究了铁核桃(Juglans sigillata)根水浸提液对受体种子发芽率及幼苗鲜重、干重的化感效应;并进一步研究了铁核桃根、叶水浸提液和胡桃醌对化感效应存在明显差异的4种绿肥植物(绿豆、红三叶、白三叶、花生)种子萌发与幼苗生长以及抗氧化酶特性的影响,以筛选适宜中国西南地区核桃园种植的绿肥植物,探讨核桃根和凋落物对绿肥作物的化感作用机制。结果表明:(1)铁核桃根水浸提液对绿豆的发芽率没有影响,但对绿豆幼苗鲜重和干重有显著抑制作用,而对其他15种绿肥的发芽率和鲜重、干重均有抑制作用。(2)胡桃醌显著抑制绿豆种子萌发,而铁核桃根或叶水浸提液对绿豆种子萌发没有影响。(3)铁核桃根或叶水浸提液以及胡桃醌对绿肥植物幼苗生长的化感效应趋势一致,但核桃根或叶水浸提液的化感效应强于胡桃醌。(4)绿豆幼苗在铁核桃根或叶水浸提液以及胡桃醌处理下,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)的活性均高于其他3种(红三叶、白三叶、花生)受体幼苗,表明绿豆清除活性氧能力高,细胞受损害程度较低,受化感作用影响最弱。研究认为,绿豆为适宜中国西南地区幼龄核桃园种植的间作绿肥植物。  相似文献   

18.
Phosphoinositide-specific phospholipase C (PI-PLC) belongs to an important class of enzymes involved in signaling related to lipids. They hydrolyze a membrane-associated phospholipid, phosphatidylinositol-4,5-bisphosphate, to produce inositol-1,4,5-trisphosphate and diacylglycerol. The role of PI-PLC and the mechanism behind its functioning is well studied in animal system; however, mechanism of plant PI-PLC functioning remains largely obscure. Here, we attempted to summarize the understanding regarding plant PI-PLC mechanism of regulation, localization, and domain association. Using sedimentation based phospholipid binding assay and surface plasmon resonance spectroscopy, it was demonstrated that C2 domain of plant PI-PLC alone is capable of targeting membranes. Moreover, change in surface hydrophobicity upon calcium stimulus is the key element in targeting plant PI-PLC from soluble fractions to membranes. This property of altering surface hydrophobicity plays a pivot role in regulation of PI-PLC activity.  相似文献   

19.
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes comprise a small family of receptor-regulated phosphodiesterases that control many cellular processes by the regulation of cytosolic calcium and/or the activity of several protein kinases. To date, six distinct classes of PI-PLC are known to exist in mammals. Here we characterise a seventh class of PI-PLC, which contains only the catalytic X domain in its structure, termed phospholipase C X-domain containing protein (PLCXD). At least three tissue-specific PLCXD isoforms exist in humans, comprising hPLCXD-1, hPLCXD-2 and hPLCXD-3, with hPLCXD-2 exhibiting three C-terminal spliceforms (2.1, 2.2 and 2.3). Specific amino acids known to be essential for the catalytic function of PI-PLCs were found to be conserved in all three human PLCXDs and over-expression of hPLCXD-1, 2.1 and 3 in the HeLa cell line increased endogenous PI-PLC activity. Human PLCXD isoforms exhibited tissue-specific expression profiles in mice and humans and immunocytochemistry revealed distinct sub-cellular localisations when over-expressed in human cultured cell lines. These novel proteins may therefore possess fundamental, and as yet uncharacterised roles in cell physiology.  相似文献   

20.
Cytochrome c oxidase associated with the mitochondrial innermembrane of the overground or underground organs of mung beanwas more stable at 40–55?C than that of the correspondingorgans of pea. In both plants, the enzyme in the overgroundorgans was more resistant to heat inactivation than that inthe underground organs. When the enzyme was solubilized andpartially purified from mung bean hypocotyls or roots, the enzymebecame more labile and was stabilized by exogenous phospholipid.The enzyme partially purified from mung bean hypocotyls wasmore resistant to inactivation than that from its roots eitherin the presence or absence of phospholipid. A subunit (subunitVa) of cytochrome c oxidase in mung bean hypocotyls differedimmunologically from that in the roots. We propose that at leastin mung bean, a nuclear-encoded subunit of cytochrome c oxidaseis synthesized tissue-specifically, which may cause the differencein the thermostability of the enzyme. (Received August 7, 1988; Accepted August 22, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号