首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A P Kwiatkowski  M M King 《Biochemistry》1989,28(13):5380-5385
Autophosphorylation plays an essential role in proteolytic activation of the type II calmodulin-dependent protein kinase (CaM kinase II). Limited proteolysis of CaM kinase II by trypsin, alpha-chymotrypsin, and Ca2+-stimulated neutral protease (calpain) yielded a catalytically active kinase fragment only when the holoenzyme was autophosphorylated prior to proteolysis. Slightly larger, inactive fragments were obtained from nonphosphorylated CaM kinase II, regardless of whether Ca2+/calmodulin or Mg2+/ATP were present or absent. The active fragment exhibited Ca2+/calmodulin-dependent kinase activity with kinetic parameters identical with those of the activated holoenzyme. The key autophosphorylation site of CaM kinase II was absent from the active fragment which indicates that proteolysis can effectively uncouple the activation state and Ca2+/calmodulin independence of the kinase from the action of phosphoprotein phosphatases. Because autophosphorylation exerts such a tight control over this irreversible process, proteolytic activation of CaM kinase II by intracellular proteases offers an attractive mechanism for prolonging the effects of Ca2+ at the synapse.  相似文献   

2.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase.  相似文献   

3.
A Ca2+/calmodulin-dependent kinase has been purified which catalyzed the phosphorylation and concomitant inactivation of both the microsomal native (100,000 Da) and protease-cleaved purified 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) (53,000 Da) fragments. This low molecular weight brain cytosolic Ca2+/calmodulin-dependent kinase phosphorylates histone H1, synapsin I, and purified HMG-CoA reductase as major substrates. The kinase, purified by sequential chromatography on DEAE-cellulose, calmodulin affinity resin, and high performance liquid chromatography (TSKG 3000 SW) is an electrophoretically homogeneous protein of approximately 110,000 Da. The molecular weight of the holoenzyme, substrate specificity, subunit protein composition, subunit autophosphorylation, subunit isoelectric points, and subunit phosphopeptide analysis suggest that this kinase of Mr 110,000 may be different from other previously reported Ca2+/calmodulin-dependent kinases. Maximal phosphorylation by the low molecular form of Ca2+/calmodulin-dependent kinase of purified HMG-CoA reductase revealed a stoichiometry of approximately 0.5 mol of phosphate/mol of 53,000-Da enzyme. Dephosphorylation of phosphorylated and inactivated native and purified HMG-CoA reductase revealed a time-dependent loss of 32P-bound radioactivity and reactivation of enzyme activity. Based on the results reported here, we propose that HMG-CoA reductase activity may be modulated by yet another kinase system involving covalent phosphorylation. The elucidation of a Ca2+/calmodulin-dependent HMG-CoA reductase kinase-mediated modulation of HMG-CoA reductase activity involving reversible phosphorylation may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

4.
To confirm directly the role of Thr-286 as the autophosphorylation site responsible for the appearance of Ca2(+)-independent activity of Ca2+/calmodulin-dependent protein kinase II alpha subunit, we constructed two mutated cDNAs of Thr-286 to Pro or Ala using site-directed mutagenesis and introduced into Chinese hamster ovary cells. The mutant enzymes expressed in stable cell lines were partially purified and their catalytic properties were confirmed to be similar to those of wild-type kinase, except that the mutant kinase which were deprived of Thr-286 as an autophosphorylation site could not be converted to Ca2(+)-independent forms upon autophosphorylation. Other autophosphorylation sites of the mutants were essentially unchanged from those of the wild-type kinase and phosphorylation of such sites did not convert them to Ca2(+)-independent forms. The results indicate that Thr-286 is the only indispensable autophosphorylation site for the appearance of Ca2(+)-independent activity of calmodulin-dependent protein kinase II alpha subunit.  相似文献   

5.
Ca2+/calmodulin-dependent protein kinase II is thought to participate in M3 muscarinic receptor-mediated acid secretion in gastric parietal cells. During acid secretion tubulovesicles carrying H+/K+-ATPase fuse with the apical membrane. We localized Ca2+/calmodulin-dependent protein kinase II from highly purified rabbit gastric tubulovesicles using Ca2+/calmodulin-dependent protein kinase II isoform-specific antibodies, in vitro phosphorylation and pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II activity by the potent Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62. The presence of Ca2+/calmodulin-dependent protein kinase II in tubulovesicles was shown by immunoblot detection of both Ca2+/calmodulin-dependent protein kinase II-gamma (54 kDa) and Ca2+/calmodulin-dependent protein kinase II-delta (56.5 kDa). The immunoprecipitated Ca2+/calmodulin-dependent protein kinase II from tubulovesicles showed Ca2+/calmodulin-dependent protein kinase activity by phosphorylating autocamtide-II, a specific synthetic Ca2+/calmodulin-dependent protein kinase II substrate. KN-62 inhibited the in vitro autophosphorylation of tubulovesicle-associated Ca2+/calmodulin-dependent protein kinase II (IC50 = 11 nM). During the search for potential Ca2+/calmodulin-dependent protein kinase II substrates we identified different proteins associated with tubulovesicles, such as synaptophysin and beta-tubulin immunoreactivity, which were identified using specific antibodies. These targets are known to participate in intracellular membrane traffic. Ca2+/calmodulin-dependent protein kinase II is thought to play an important role in regulating tubulovesicular motor activity and therefore in acid secretion.  相似文献   

6.
Chymotryptic digestion of postsynaptic densities releases a soluble, catalytically active fragment of the alpha (Mr 50,000) subunit of the neuronal cytoskeletal calmodulin-dependent protein kinase II. The purified soluble form of the kinase likewise yields the fragment. Denaturation of the enzyme results in more extensive proteolytic degradation. 125I-Iodopeptide maps of the isolated catalytic portions of both forms of the enzyme are similar and are contained within the map of the isolated alpha subunit. Catalytic fragments of both forms of the enzyme comigrate on two-dimensional SDS-PAGE/isoelectric focusing with pI 6.7-7.2. The fragment phosphorylates microtubule-associated protein (MAP-2) but is not activated by Ca+2/calmodulin nor is it inhibited by trifluoperazine. Km values for MAP-2 and ATP are indistinguishable from those of the holoenzyme, while the Vmax is similar to that of the holoenzyme activated with Ca+2/calmodulin. Overlays of Western blots of fragment with 125I-calmodulin shows a loss of calmodulin binding. Both the number of phosphorylation sites and the ability to autophosphorylate are markedly reduced in the catalytic fragment. Evaluation of the hydrodynamic parameters of the purified fragment yielded Mr value of 25,600 with a frictional ratio (f/f0) of 1.12; the Mr value determined by SDS-PAGE was 30,000. Thus, the catalytic fragment appears to represent an activated form of the kinase with a monomeric, globular structure unlike the native enzyme which exhibits oligomerization and cytoskeletal association. These results are consistent with a tertiary structure for the calmodulin-dependent protein kinase that contains distinct domains responsible for catalytic activity, regulation by calmodulin, cytoskeletal association and the multimeric organization of enzyme subunits.  相似文献   

7.
In this study, we examined the activation mechanism of Dictyostelium myosin light chain kinase A (MLCK-A) using constitutively active Ca2+/calmodulin-dependent protein kinase kinase as a surrogate MLCK-A kinase. MLCK-A was phosphorylated at Thr166 by constitutively active Ca2+/calmodulin-dependent protein kinase kinase, resulting in an approximately 140-fold increase in catalytic activity, using intact Dictyostelium myosin II. Recombinant Dictyostelium myosin II regulatory light chain and Kemptamide were also readily phosphorylated by activated MLCK-A. Mass spectrometry analysis revealed that MLCK-A expressed by Escherichia coli was autophosphorylated at Thr289 and that, subsequent to Thr166 phosphorylation, MLCK-A also underwent a slow rate of autophosphorylation at multiple Ser residues. Using site-directed mutagenesis, we show that autophosphorylation at Thr289 is required for efficient phosphorylation and activation by an upstream kinase. By performing enzyme kinetics analysis on a series of MLCK-A truncation mutants, we found that residues 283-288 function as an autoinhibitory domain and that autoinhibition is fully relieved by Thr166 phosphorylation. Simple removal of this region resulted in a significant increase in the kcat of MLCK-A; however, it did not generate maximum enzymatic activity. Together with the results of our kinetic analysis of the enzymes, these findings demonstrate that Thr166 phosphorylation of MLCK-A by an upstream kinase subsequent to autophosphorylation at Thr289 results in generation of maximum MLCK-A activity through both release of an autoinhibitory domain from its catalytic core and a further increase (15-19-fold) in the kcat of the enzyme.  相似文献   

8.
It is now well established that autophosphorylation of a threonine residue located next to each calmodulin-binding domain in the subunits of type II Ca2+/calmodulin-dependent protein kinase causes the kinase to remain active, although at a reduced rate, after Ca2+ is removed from the reaction. This autophosphorylated form of the kinase is still sensitive to Ca2+/calmodulin, which is required for a maximum catalytic rate. After removal of Ca2+, new sites are autophosphorylated by the partially active kinase. Autophosphorylation of these sites abolishes sensitivity of the kinase to Ca2+/calmodulin (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R. (1987) J. Biol. Chem. 262, 8051-8055). We have identified two pairs of homologous residues, Thr305 and Ser314 in the alpha subunit and Thr306 and Ser315 in the beta subunit, that are autophosphorylated only after removal of Ca2+ from an autophosphorylation reaction. The sites were identified by direct sequencing of labeled tryptic phosphopeptides isolated by reverse-phase high pressure liquid chromatography. Thr305-306 is rapidly dephosphorylated by purified protein phosphatases 1 and 2A, whereas Ser314-315 is resistant to dephosphorylation. We have shown by selective dephosphorylation that the presence of phosphate on Thr305-306 blocks sensitivity of the kinase to Ca2+/calmodulin. In contrast, the presence of phosphate on Ser314-315 is associated with an increase in the Kact for Ca2+/calmodulin of only about 2-fold, producing a relatively small decrease in sensitivity to Ca2+/calmodulin.  相似文献   

9.
Autophosphorylation of smooth-muscle caldesmon.   总被引:1,自引:0,他引:1       下载免费PDF全文
Caldesmon, a major actin- and calmodulin-binding protein of smooth muscle, has been implicated in regulation of the contractile state of smooth muscle. The isolated protein can be phosphorylated by a co-purifying Ca2+/calmodulin-dependent protein kinase, and phosphorylation blocks inhibition of the actomyosin ATPase by caldesmon [Ngai & Walsh (1987) Biochem. J. 244, 417-425]. We have examined the phosphorylation of caldesmon in more detail. Several lines of evidence indicate that caldesmon itself is a kinase and the reaction is an intermolecular autophosphorylation: (1) caldesmon (141 kDa) and a 93 kDa proteolytic fragment of caldesmon can be separated by ion-exchange chromatography: both retain caldesmon kinase activity, which is Ca2+/calmodulin-dependent; (2) chymotryptic digestion of caldesmon generates a Ca2+/calmodulin-independent form of caldesmon kinase; (3) caldesmon purified to electrophoretic homogeneity retains caldesmon kinase activity, and elution of enzymic activity from a fast-performance-liquid-chromatography ion-exchange column correlates with caldesmon of Mr 141,000; (4) caldesmon is photoaffinity-labelled with 8-azido-[alpha-32P]ATP; labelling is inhibited by ATP, GTP and CTP, indicating a lack of nucleotide specificity; (5) caldesmon binds tightly to Affi-Gel Blue resin, which recognizes proteins having a dinucleotide fold. Autophosphorylation of caldesmon occurs predominantly on serine residues (83.3%), with some threonine (16.7%) and no tyrosine phosphorylation. Autophosphorylation is site-specific: 98% of the phosphate incorporated is recovered in a 26 kDa chymotryptic peptide. Complete tryptic/chymotryptic digestion of this phosphopeptide followed by h.p.l.c. indicates three major phosphorylation sites. Caldesmon exhibits a high degree of substrate specificity: apart from autophosphorylation, brain synapsin I is the only good substrate among many potential substrates examined. These observations indicate that caldesmon may regulate its own function (inhibition of the actomyosin ATPase) by Ca2+/calmodulin-dependent autophosphorylation. Furthermore, caldesmon may regulate other cellular processes, e.g. neurotransmitter release, through the Ca2+/calmodulin-dependent phosphorylation of other proteins such as synapsin I.  相似文献   

10.
The phosphorylation sites in the myristoylated alanine-rich C kinase substrate or MARCKS protein consist of four serines contained within a conserved, basic region of 25 amino acids, termed the phosphorylation site domain. A synthetic peptide comprising this domain was phosphorylated by both protein kinase C and its catalytic fragment with high affinity and apparent positive cooperativity. Tryptic phosphopeptides derived from the peptide appeared similar to phosphopeptides derived from the phosphorylated intact protein. The peptide was phosphorylated by cAMP- and cGMP-dependent protein kinases with markedly lower affinities. In peptides containing only one of the four serines, with the other three serines replaced by alanine, the affinities for protein kinase C ranged from 25 to 60 nM with Hill constants between 1.8 and 3.0. The potential pseudosubstrate peptide, in which all four serines were replaced by alanines, inhibited protein kinase C phosphorylation of histone or a peptide substrate with an IC50 of 100-200 nM with apparently non-competitive kinetics; it also inhibited the catalytic fragment of protein kinase C with a Ki of 20 nM, with kinetics of the mixed type. The peptide did not significantly inhibit the cAMP- and cGMP-dependent protein kinases. It inhibited Ca2+/calmodulin-dependent protein kinases I, II, and III by competing with the kinases for calmodulin. In addition, the peptide inhibited the Ca2+/calmodulin-independent activity of a proteolytic fragment of Ca2+/calmodulin protein kinase II, with an IC50 approximately 5 microM. Thus, the phosphorylation site domain peptide of the MARCKS protein is a high affinity substrate for protein kinase C in vitro; the cognate peptide containing no serines is a potent but not completely specific inhibitor of both protein kinase C and its catalytic fragment.  相似文献   

11.
The regulatory role of Arg283 in the autoinhibitory domain of Ca2+/calmodulin-dependent protein kinase II was investigated using substituted inhibitory synthetic peptides and site-directed mutation of the expressed kinase. In the synthetic peptide corresponding to the autoinhibitory domain (residues 281-309) of Ca2+/calmodulin-dependent protein kinase II, substitution of Arg283 by other residues increased the IC50 values of the peptides in the following order: Arg much less than Lys much less than Gln much less than Glu. Site-directed mutations of Arg283 to glutamic acid and glutamine in the kinase alpha subunit cDNA were transcribed and translated in vitro. The expressed enzymes had the same total kinase activities, determined in the presence of Ca2+/CaM, but the Glu283 mutant had a slightly higher Ca2(+)-independent kinase activity (5.46 +/- 0.88%) compared to the wild-type Arg283 (1.86 +/- 0.71%) and the Gln283 mutant (2.15 +/- 0.60%). When the expressed kinases were subjected to limited autophosphorylation on ice to monitor generation of the Ca2(+)-independent activity, the Arg283 kinase attained maximal Ca2(+)-independent activity (about 20%) within 30 s, whereas the Gln283 and Glu283 mutants attained maximal Ca2(+)-independence only after about 40 min of autophosphorylation. The results indicate that Arg283 is a very important determinant for the regulatory autophosphorylation of Thr286 that generates the Ca2(+)-independent activity but is not essential for the other multiple autophosphorylations within Ca2+/calmodulin-dependent protein kinase II, and that Arg283 is only one of several important residues for the inhibitory potency of the autoinhibitory domain.  相似文献   

12.
Autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase converts it from a Ca2(+)-dependent to a Ca2(+)-independent or autonomous kinase, a process that may underlie some long-term enhancement of transient Ca2+ signals. We demonstrate that the neuronal alpha subunit clone expressed in COS-7 cells (alpha-CaM kinase) is sufficient to encode the regulatory phenomena characteristic of the multisubunit kinase isolated from brain. Activity of alpha-CaM kinase is highly dependent on Ca2+/calmodulin. It is converted by autophosphorylation to an enzyme capable of Ca2(+)-independent (autonomous) substrate phosphorylation and autophosphorylation. Using site-directed mutagenesis, we separately eliminate five putative autophosphorylation sites within the regulatory domain and directly examine their individual roles. Ca2+/calmodulin-dependent kinase activity is fully retained by each mutant, but Thr286 is unique among the sites in being indispensable for generation of an autonomous kinase.  相似文献   

13.
Phospholamban, the putative regulatory proteolipid of the Ca2+/Mg2+ ATPase in cardiac sarcoplasmic reticulum, was selectively phosphorylated by a Ca2+/calmodulin (CaM)-dependent protein kinase associated with a cardiac membrane preparation. This kinase also catalyzed the phosphorylation of two exogenous proteins known to be phosphorylated by the multifunctional Ca2+/CaM-dependent protein kinase II (Ca2+/CaM-kinase II), i.e., smooth muscle myosin light chains and glycogen synthase a. The latter protein was phosphorylated at sites previously shown to be phosphorylated by the purified multifunctional Ca2+/CaM-kinase II from liver and brain. The membrane-bound kinase did not phosphorylate phosphorylase b or cardiac myosin light chains, although these proteins were phosphorylated by appropriate, specific calmodulin-dependent protein kinases added exogenously. In addition to phospholamban, several other membrane-associated proteins were phosphorylated in a calmodulin-dependent manner. The principal one exhibited a Mr of approximately 56,000, a value similar to that of the major protein (57,000) in a partially purified preparation of Ca2+/CaM-kinase II from the soluble fraction of canine heart that was autophosphorylated in a calmodulin-dependent manner. These data indicate that the membrane-bound, calmodulin-dependent protein kinase that phosphorylates phospholamban in cardiac membranes is not a specific calmodulin-dependent kinase, but resembles the multifunctional Ca2+/CaM-kinase II. Our data indicate that this kinase may be present in both the particulate and soluble fractions of canine heart.  相似文献   

14.
The autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) results in the generation of kinase activity that is largely Ca2+/CaM-independent. We report that continued Ca2+/CaM-independent autophosphorylation of CaM-KII results in the generation of distinct phosphopeptides as identified by high performance liquid chromatography and enzymatic properties that are different than those observed for Ca2+/CaM-dependent autophosphorylation. These Ca2+/CaM-independent properties include (a) increased catalytic activity, (b) higher substrate affinity for the phosphorylation of synapsin I, and (c) decreased CaM-binding to both CaM-KII subunits as analyzed by gel overlays. Our results indicate that the autophosphorylation of only one subunit per holoenzyme is required to generate the Ca2+/CaM-independent CaM-KII. We suggest a two-step process by which autophosphorylation regulates CaM-KII. Step I requires Ca2+/CaM and underlies initial kinase activation. Step II involves continued autophosphorylation of the Ca2+/CaM-independent kinase and results in increased affinity for its substrate synapsin I and decreased affinity for calmodulin. These results indicate a complex mechanism through which autophosphorylation of CaM-KII may regulate its activity in response to transient fluctuations in intracellular calcium.  相似文献   

15.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

16.
Previous studies have purified from brain a Ca2+/calmodulin-dependent protein kinase II (designated CaM-kinase II) that phosphorylates synapsin I, a synaptic vesicle-associated phosphoprotein. CaM-kinase II is composed of a major Mr 50K polypeptide and a minor Mr 60K polypeptide; both bind calmodulin and are phosphorylated in a Ca2+/calmodulin-dependent manner. Recent studies have demonstrated that the 50K component of CaM-kinase II and the major postsynaptic density protein (mPSDp) in brain synaptic junctions (SJs) are virtually identical and that the CaM-kinase II and SJ 60K polypeptides are highly related. In the present study the photoaffinity analog [alpha-32P]8-azido-ATP was used to demonstrate that the 60K and 50K polypeptides of SJ-associated CaM-kinase II each bind ATP in the presence of Ca2+ plus calmodulin. This result is consistent with the observation that these proteins are phosphorylated in a Ca2+/calmodulin-dependent manner. Experiments using 32P-labeled peptides obtained by limited proteolysis of 60K and 50K polypeptides from SJs demonstrated that within each kinase polypeptide the same peptide regions contain both autophosphorylation and 125I-calmodulin binding sites. These results suggested that the autophosphorylation of CaM-kinase II could regulate its capacity to bind calmodulin and, thus, its capacity to phosphorylate substrate proteins. By using 125I-calmodulin overlay techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis we found that phosphorylated 50K and 60K CaM-kinase II polypeptides bound more calmodulin (50-70%) than did unphosphorylated kinase polypeptides. Levels of in vitro CaM-kinase II activity in SJs were measured by phosphorylation of exogenous synapsin I. SJs containing highly phosphorylated CaM-kinase II displayed greater activity in phosphorylating synapsin I (300% at 15 nM calmodulin) relative to control SJs that contained unphosphorylated CaM-kinase II. The CaM-kinase II activity in phosphorylated SJs was indistinguishable from control SJs at saturating calmodulin concentrations (300-1,000 nM). These findings show that the degree of autophosphorylation of CaM-kinase II in brain SJs modulates its in vitro activity at low and possibly physiological calmodulin concentrations; such a process may represent a mechanism of regulating this kinase's activity at CNS synapses in situ.  相似文献   

17.
Phospholamban is a regulatory protein in cardiac sarcoplasmic reticulum that is phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. In this report, we present the partial amino acid sequence of canine cardiac phospholamban and the identification of the sites phosphorylated by these two protein kinases. Gas-phase protein sequencing was used to identify 20 NH2-terminal residues. Overlap peptides produced by trypsin or papain digestion extended the sequence 16 residues to give the following primary structure: Ser-Ala-Ile-Arg-Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-Ala- Arg-Gln-Asn-Leu-Gln-Asn-Leu-Phe-Ile-Asn-Phe-(Cys)-Leu-Ile-Leu-Ile-(Cys)- Leu-Leu-Leu-Ile-. Phospholamban phosphorylated by either cAMP-dependent or Ca2+/calmodulin-dependent protein kinase was cleaved with trypsin, and the major phosphorylated peptide (comprising greater than 70% of the incorporated 32P label) was purified by reverse-phase high performance liquid chromatography. The identical sequence was revealed for the radioactive peptide obtained from phospholamban phosphorylated by either kinase: Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-. The adjacent residues Ser7 and Thr8 of phospholamban were identified as the unique sites phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinases, respectively. These results establish that phospholamban is an oligomer of small, identical polypeptide chains. A hydrophilic, cytoplasmically oriented NH2-terminal domain on each monomer contains the unique, adjacent residues phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. Analysis by hydropathic profiling and secondary structure prediction suggests that phospholamban monomers also contain a hydrophobic domain, which could form amphipathic helices sufficiently long to traverse the sarcoplasmic reticulum membrane. A model of phospholamban as a pentamer is presented in which the amphipathic alpha-helix of each monomer is a subunit of the pentameric membrane-anchored domain, which is comprised of an exterior hydrophobic surface and an interior hydrophilic region containing polar side chains.  相似文献   

18.
Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site which may be masked in the presence of bound calmodulin. This burst of Ca(2+)-independent autophosphorylation blocks the ability of calmodulin to activate the kinase. We have used site-directed mutagenesis to replace putative inhibitory autophosphorylation sites within the calmodulin binding domain of recombinant alpha-CaM kinase with nonphosphorylatable alanines and examined the effects on autophosphorylation, kinase activity, and calmodulin binding. Although prominent Ca(2+)-independent autophosphorylation occurs within the calmodulin binding domain at Thr305, Thr306, and Ser314 in wild-type alpha-CaM kinase, the inhibitory effect on kinase activity and calmodulin binding is retained in mutants lacking any one of these three sites. However, when both Thr305 and Thr306 are converted to alanines the kinase does not display inhibition of either activity or calmodulin binding. Autophosphorylation at either Thr305 or Thr306 is therefore sufficient to block both binding and activation of the kinase by Ca2+/calmodulin. Thr306 is also slowly autophosphorylated in a basal reaction in the continuous absence of Ca2+/calmodulin. Autophosphorylation of Thr306 by the kinase in either its basal or autonomous state suggests that in the absence of bound calmodulin, the region of the autoregulatory domain surrounding Thr306, rather than the region near the autonomy site, lies nearest the peptide substrate binding site of the kinase.  相似文献   

19.
Identification of an autoinhibitory domain in calcineurin   总被引:16,自引:0,他引:16  
The hypothesis that calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, contains an autoinhibitory domain was tested using synthetic peptides corresponding to regions of the carboxyl-terminus of calcineurin. Of the several peptides analyzed, one, containing residues I-T-S-F-E-E-A-K-G-L-D-R-I-N-E-R-M-P-P-R-R-D-A-M-P, gave complete inhibition of its protein phosphatase activity. Using [32P]myosin light chain as substrate an IC50 of about 10 microM was obtained with either native calcineurin, assayed in the presence of Ca2+/calmodulin, or with calcineurin subjected to partial proteolysis which converts it to a fully active phosphatase when assayed in the presence of [ethylenebis (oxyethylenenitrilo)]tetraacetic acid. With 50 mM p-nitrophenylphosphate as substrate an IC50 of about 40 microM was observed. Studies with overlapping peptides suggested that the sequence P-P-R-R-D-A-M-P was essential but not sufficient for the observed inhibition. Kinetic analysis indicated that the inhibition of phosphatase activity was not competitive with respect to [32P]myosin light chain. This peptide did not show significant inhibition of the catalytic subunits of protein phosphatases type I or type IIA or of Ca2+/calmodulin-dependent protein kinase II. These results indicate that amino acids within this sequence of calcineurin constitute a unique autoinhibitory domain which interacts with the active site and is responsible for the low basal phosphatase activity in the absence of Ca2+/calmodulin.  相似文献   

20.
Functional domains of chicken gizzard myosin light chain kinase   总被引:2,自引:0,他引:2  
The proteolytic susceptibility of chicken gizzard myosin light chain kinase, a calmodulin-dependent enzyme, has been utilized to define the relative location of the catalytic and regulatory domains of the enzyme. Myosin light chain kinase isolated from this source exhibits a Mr of 130,000 and is extremely sensitive to trypsin at 24 degrees C; however, the molecule is divided into susceptible and resistant domains such that proteolysis proceeds rapidly and at multiple sites in the sensitive regions even at 4 degrees C while the rest of the molecule remains relatively resistant to digestion. One of these sensitive areas is the calmodulin-binding domain. On the other hand, Staphylococcus aureus V8 protease digestion generates a calmodulin-binding fragment (Mr = 70,000) that retains Ca2+/calmodulin-dependent enzymatic activity and both of the phosphorylation sites recognized by cAMP-dependent protein kinase. In contrast, treatment with chymotrypsin produces a 95,000 Mr calmodulin-binding fragment that contains only the calmodulin-modulated phosphorylation site. Sequential proteolytic digestion studies demonstrated that the chymotryptic cleavage site responsible for the generation of this 95,000 Mr peptide is within 3,000 Mr of the V8 protease site which produces the 70,000 Mr fragment. Moreover, the non-calmodulin-modulated phosphorylation site must exist in this 3,000 Mr region. A calmodulin-Sepharose affinity adsorption protocol was developed for the digestion and used to isolate both the 70,000 and 95,000 Mr fragments for further study. Taken together, our results are compatible with a model for chicken gizzard myosin light chain kinase in which there is no overlap between the active site, the calmodulin-binding region, and the two sites phosphorylated by cAMP-dependent protein kinase with regard to their relative position in the primary sequence of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号