首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Damage to DNA and disruption of membrane integrity by lipid peroxidation processes are two of the proposed causes of UV‐B‐induced growth inhibition in plants. However, the relative significance of these different types of molecular damage has not been established in experiments carried out under realistic physiological conditions. Plants of Gunnera magellanica (a native herb from southern Patagonia) were exposed to a gradient of biologically effective UV‐B doses (from 0 to 6.5 kJ m?2 d?1 of UV‐Bbe) in a greenhouse study. Leaf expansion was measured and sensitive techniques were used to detect damage to DNA (in the form of cyclobutane pyrimidine dimers; CPDs) and lipid peroxidation (via electronic‐paramagnetic resonance; EPR). Leaf expansion decreased and the CPD density increased with increasing UV‐B doses, but the degree of lipid peroxidation remained unaffected. The highest UV‐B dose induced a transient oxidative stress situation (as evaluated using the ratio of ascorbyl radical to ascorbate, A·/AH), which was rapidly controlled by an increase in the ascorbate pool. The present results suggest that under a range of UV‐Bbe doses that overlaps the range of doses that G. magellanica plants experience in their natural environment, growth inhibition is better explained by DNA damage than by increased lipid peroxidation.  相似文献   

2.
A study was made of the effects of solar ultraviolet‐B radiation (UV‐B) on the growth of the dominant plant species of a shrub‐dominated ecosystem in Tierra del Fuego. This part of southern Argentina can be under the direct influence of the Antarctic ‘ozone hole’ during the austral spring and lingering ozone‐depleted air during the summer. The plant community is dominated by an evergreen shrub (Chiliotrichum diffusum) with an herbaceous layer of Gunnera magellanica and Blechnum penna‐marina in the interspaces between the shrubs. Inspections of ozone trends indicate that the springtime and summertime ozone column over Tierra del Fuego has decreased by 10–13% from 1978/9 to 1998/9. In a set of well‐replicated field plots, solar UV‐B was reduced to approximately 15–20% of the ambient UV‐B using plastic films. Polyester films were used to attenuate UV‐B radiation and UV‐transparent films (~90% UV‐B transmission) were used as control. Treatments were imposed during the growing season beginning in 1996 and continued for three complete growing seasons. Stem elongation of the shrub C. diffusum was not affected by UV‐B attenuation in any of the three seasons studied. However, frond length of B. penna‐marina under attenuated UV‐B was significantly greater than that under near‐ambient UV‐B in all three seasons. Attenuation of solar UV‐B also promoted the expansion of G. magellanica leaves in two of the growing seasons. Differences between treatments in leaf or frond length in B. penna‐marina and G. magellanica did not exceed 12%. Another significant effect of UV‐B attenuation was a promotion of insect herbivory in G. magellanica, with a 25–75% increase in the leaf area consumed. Changes in plant phenology or relative species cover were not detected within the time frame of this study. The results suggest that the increase in UV‐B radiation associated with the erosion of the ozone layer might be affecting the functioning of this ecosystem to some degree, particularly by inhibiting the growth of some plant species and by altering plant–insect interactions.  相似文献   

3.
Ratios of chlorophyll fluorescence induced by ultraviolet (UV) and bluegreen (BG) radiation [F(UV)/F(BG)] were determined with a Xe‐PAM fluorometer to test the utility of this technique as a means of non‐intrusively assessing changes in the pigmentation and optical properties of leaves exposed to varying UV exposures under laboratory and field conditions. For plants of Vicia faba and Brassica campestris, grown under controlled‐environmental conditions, F(UV‐B)/F(BG) was negatively correlated with whole‐leaf UV‐B‐absorbing pigment concentrations. Fluorescence ratios of V. faba were similar to, and positively correlated with (r2=0.77 [UV‐B]; 0.85 [UV‐A]), direct measurements of epidermal transmittance made with an integrating sphere. Leaves of 2 of 4 cultivars of field‐grown Glycine max exposed to near‐ambient solar UV‐B at a mid‐latitude site (Buenos Aires, Argentina, 34° S) showed significantly lower abaxial F(UV‐B)/F(BG) values (i.e., lower UV‐B epidermal transmittance) than those exposed to attenuated UV‐B, but solar UV‐B reduction had a minimal effect on F(UV‐B)/F(BG) in plants growing at a high‐latitude site (Tierra del Fuego, Argentina, 55° S). Similarly, the exotic Taraxacum officinale did not show significant changes in F(UV‐B)/F(BG) when exposed to very high supplemental UV‐B (biologically effective UV‐B=14–15 kJ m?2 day?1) in the field in Tierra del Fuego, whereas a native species, Gunnera magellanica, showed significant increases in F(UV‐B)/F(BG) relative to those receiving ambient UV‐B. These anomalous fluorescence changes were associated with increases in BG‐absorbing pigments (anthocyanins), but not UV‐B‐absorbing pigments. These results indicate that non‐invasive estimates of epidermal transmittance of UV radiation using chlorophyll fluorescence can detect changes in pigmentation and leaf optical properties induced by UV‐B radiation under both field and laboratory conditions. However, this technique may be of limited utility in cold environments where UV and low temperatures can stimulate the production of BG‐absorbing pigments that interfere with these indirect measurements of UV‐transmittance.  相似文献   

4.
Tierra del Fuego, Argentina (55°S), receives increased solar ultraviolet‐B radiation (UV‐B) as a result of Antarctic stratospheric ozone depletion. We conducted a field study to examine direct and indirect effects of solar UV‐B radiation on decomposition of Gunnera magellanica, a native perennial herb, and on the native community of decomposer organisms. In general, indirect effects of UV‐B mostly occur due to changes in the chemical composition of litter, whereas direct effects during decomposition result from changes in decomposer organisms and/or differences in the photochemical breakdown of litter. We designed a full‐factorial experiment using senescent leaves that had received either near‐ambient or attenuated UV‐B during growth. The leaves were distributed in litterbags and allowed to decompose under near‐ambient or reduced solar UV‐B during the growing season. We evaluated initial litter quality, mass loss, and nutrient release of decomposing litter, and microbial colonization of both initial litter and decomposed litter. We found that litter that decomposed under near‐ambient UV‐B had significantly less mass loss than litter that decomposed under reduced UV‐B. The UV‐B conditions received by plants during growth, which did not affect mass loss and nutrient composition of litter, affected fungal species composition but in different ways throughout the decomposition period. Before the decomposition trial, Beauveria bassiana and Penicillium frequentans were higher under reduced UV‐B, whereas Cladosporium herbarum and pigmented bacteria were more common under the near‐ambient compared to the reduced UV‐B treatment. After the decomposition period, leaves that had grown under reduced UV‐B showed higher frequency of Penicillium thomii and lower frequency of Trichoderma polysporum than leaves that had grown under near‐ambient conditions. The UV‐B condition received during decomposition also affected fungal colonization, with Penicillium chrysogenum being more frequent in leaves that had decomposed under reduced UV‐B, while the other species were not affected. Our results demonstrate that, in this ecosystem, the effects of UV‐B radiation on decomposition apparently occurred mostly through changes in the fungal community, while changes in photochemical breakdown appeared to be less important.  相似文献   

5.
The impact of ambient ultraviolet (UV)‐B radiation on the endemic bryophyte, Grimmia antarctici, was studied over 14 months in East Antarctica. Over recent decades, Antarctic plants have been exposed to the largest relative increase in UV‐B exposure as a result of ozone depletion. We investigated the effect of reduced UV and visible radiation on the pigment concentrations, surface reflectance and physiological and morphological parameters of this moss. Plexiglass screens were used to provide both reduced UV levels (77%) and a 50% decrease in total radiation. The screen combinations were used to separate UV photoprotective from visible photoprotective strategies, because these bryophytes are growing in relatively high light environments compared with many mosses. G. antarctici was affected negatively by ambient levels of UV radiation. Chlorophyll content was significantly lower in plants grown under near‐ambient UV, while the relative proportions of photoprotective carotenoids, especially β‐carotene and zeaxanthin, increased. However, no evidence for the accumulation of UV‐B‐absorbing pigments in response to UV radiation was observed. Although photosynthetic rates were not affected, there was evidence of UV effects on morphology. Plants that were shaded showed fewer treatment responses and these were similar to the natural variation observed between moss growing on exposed microtopographical ridges and in more sheltered valleys within the turf. Given that other Antarctic bryophytes possess UV‐B‐absorbing pigments which should offer better protection under ambient UV‐B radiation, these findings suggest that G. antarctici may be disadvantaged in some settings under a climate with continuing high levels of springtime UV‐B radiation.  相似文献   

6.
Stratospheric ozone depletion by anthropogenic chlorofluorocarbons has lead to increases in ultraviolet‐B radiation (UV‐B; 280–320 nm) along the Antarctic Peninsula during the austral spring. We manipulated UV‐B levels around plants of Antarctic hair grass (Deschampsia antarctica; Poaceae) and Antarctic pearlwort (Colobanthus quitensis; Caryophyllaceae) for one field season near Palmer Station along the west coast of the Antarctic Peninsula. Treatments involved placing frames over naturally growing plants that either (1) held filters that absorbed most biologically effective radiation (UV‐BBE; ‘reduced UV‐B’, 22% of ambient UV‐BBE levels), (2) held filters that transmitted most UV‐BBE (‘near‐ambient UV‐B’, 87% of ambient UV‐BBE levels), or (3) lacked filters (‘ambient UV‐B’). Leaves on D. antarctica exposed to near‐ambient and ambient UV‐B were 16–17% shorter than those exposed to reduced UV‐B, and this was associated with shorter epidermal cells at the leaf base and tip. Leaves on C. quitensis exposed to near‐ambient and ambient UV‐B tended to be shorter (P=0.18) and epidermal cells at the leaf base tended to be smaller than those under reduced UV‐B (P<0.10). In order to further explain reductions in leaf length, we examined leaf concentrations of insoluble (cell‐wall bound) phenylpropanoids, since it has been proposed that wall‐bound phenylpropanoids such as ferulic acid may constrain cell expansion and leaf elongation. In both species, HPLC analysis revealed that ferulic and p‐coumaric acid were major components of both insoluble and soluble phenylpropanoids. Although there were no significant differences in concentrations between UV‐B treatments, concentrations of insoluble ferulic acid in D. antarctica tended to be higher under ambient and near‐ambient UV‐B than under reduced UV‐B (P=0.17). We also examined bulk‐leaf concentrations of soluble (methanol extractable) UV‐B‐absorbing compounds and found that concentrations were higher in plants exposed to near‐ambient and ambient UV‐B than in plants exposed to reduced UV‐B. We also assessed the UV‐B‐screening effectiveness of leaves that had developed on plants at the field site with a fiber‐optic microprobe. Leaf epidermal transmittance of 300‐nm UV‐B was 4.0 and 0.6% for D. antarctica and C. quitensis, respectively, which is low compared to grasses and herbaceous dicotyledonous plants found in more temperate climates. While the leaves of Antarctic vascular plants are relatively effective at screening UV‐B, levels of UV‐B in Antarctica are sufficient to reduce leaf epidermal cell size and leaf elongation in these species, although the mechanisms for these reductions remain unclear.  相似文献   

7.
Insect perception of ambient ultraviolet-B radiation   总被引:3,自引:0,他引:3  
Solar ultraviolet‐B radiation (UV‐B, 290–315 nm) has a strong influence on the interactions between plants and animal consumers. Field studies in various ecosystems have shown that the intensity of insect herbivory increases when the UV‐B spectral band of solar radiation is experimentally attenuated using filters. This effect of UV‐B on insect herbivory has been attributed to UV‐B‐induced changes in the characteristics of plant tissues, and to direct damaging effects of UV‐B photons on the animals. We tested for effects of UV‐B radiation on insect behaviour using field experiments with the thrips Caliothrips phaseoli. When placed in a ‘choice’ tunnel under natural daylight, these insects showed a clear preference for low‐UV‐B environments, and this preference could not be accounted for by differences between environments in total irradiance. These results provide the first evidence of ambient UV‐B photoperception in an insect, challenging the idea that animals are unable to detect variations in the narrow UV‐B component of solar radiation.  相似文献   

8.
The effects of elevated UV‐B (280–315 nm) radiation on the long‐term decomposition of Quercus robur leaf litter were assessed at an outdoor facility in the UK by exposing saplings to elevated UV‐B radiation (corresponding to a 30% increase above the ambient level of erythemally weighted UV‐B, equivalent to that resulting from a c. 18% reduction in ozone column) under arrays of cellulose diacetate‐filtered fluorescent UV‐B lamps that also produced UV‐A radiation (315–400 nm). Saplings were also exposed to elevated UV‐A radiation alone under arrays of polyester‐filtered fluorescent lamps and to ambient solar radiation under arrays of nonenergized lamps. After 8 months of irradiation, abscised leaves were placed into litter bags and allowed to decompose in the litter layer of a mixed deciduous woodland for 4.08 years. The dry weight loss of leaf litter from saplings irradiated with elevated UV‐B and UV‐A radiation during growth was 17% greater than that of leaf litter irradiated with elevated UV‐A radiation alone. Annual fractional weight loss of litter (k), and the estimated time taken for 95% of material to decay (3/k) were respectively increased and decreased by 27% for leaf litter exposed during growth to elevated UV‐B and UV‐A radiation, relative to that exposed to UV‐A alone. The present data corroborate those from a previous study indicating that UV‐B radiation applied during growth accelerates the subsequent decomposition of Q. robur leaf litter in soil, but indicate that this effect persists for over four years after abscission.  相似文献   

9.
The induction of cyclobutane pyrimidine dimers (CPDs) by ultraviolet‐B radiation (UV‐B, 280–315 nm) and repair mechanisms were studied in the lichen Cladonia arbuscula ssp. mitis exposed to different temperatures and water status conditions. In addition, the development and repair of CPDs were studied in relation to the different developmental stages of the lichen thallus podetial branches. Air‐dried lichen thalli exposed to UV‐B radiation combined with relatively high visible light (HL, 800 μmol m?2 s?1; 400–700 nm) for 7 days showed a progressive increase of CPDs with no substantial repair, although HL was present during and after irradiation with UV‐B. Fully hydrated lichen thalli, that had not been previously exposed to UV‐B radiation for 7 days, were given short‐term UV‐B radiation treatment at 25°C, and accumulated DNA lesions in the form of CPDs, with repair occurring when they were exposed to photoreactivating conditions (2 h of 300 μmol m?2 s?1, 400–700 nm). A different pattern was observed when fully hydrated thalli were exposed to short‐term UV‐B radiation at 2°C, in comparison with exposure at 25°C. High levels of CPDs were induced at 2°C under UV‐B irradiation, without significant repair under subsequent photoreactivating light. Likewise, when PAR (300 μmol m?2 s?1) and UV‐B radiation were given simultaneously, the CPD levels were not lowered. Throughout all experiments the youngest, less differentiated parts of the lichen thallus – namely ‘tips’, according to our arbitrary subdivision – were the parts showing the highest levels of CPD accumulation and the lowest levels of repair in comparison with the older thallus tissue (‘stems’). Thus the experiments showed that Cladonia arbuscula ssp. mitis is sensitive to UV‐B irradiation in the air‐dried state and is not able to completely repair the damage caused by the radiation. Furthermore, temperature plays a role in the DNA damage repairing capacity of this lichen, since even when fully hydrated, C. arbuscula ssp. mitis did not repair DNA damage at the low temperatures.  相似文献   

10.
We examined the influence of solar ultraviolet‐B radiation (UV‐B; 280–315 nm) on the growth of Colobanthus quitensis plants by placing them under contrasting UV‐B filters at Palmer Station, along the Antarctic Peninsula. The filters reduced diurnal biologically effective UV‐B (UV‐BBE) either by 83% (‘reduced UV‐B’) or by 12% (‘near‐ambient UV‐B’) over the 63 day experiment (7 November 1998–8 January 1999). Ozone column depletion averaged 17% during the experiment. Relative growth and net assimilation rates of plants exposed to near‐ambient UV‐B were 30 and 20% lower, respectively, than those of plants exposed to reduced UV‐B. The former plants produced 29% less total biomass, as a result of containing 54% less aboveground biomass. These reductions in aboveground biomass were mainly the result of a 45% reduction in shoot biomass, and a 31% reduction in reproductive biomass. Reductions in shoot biomass were owing to an 18% reduction in branch production by main shoots, while reductions in reproductive biomass were the result of a 19% reduction in individual capsule mass. Total plant leaf area was reduced by 19% under near‐ambient UV‐B, although total leaf biomass was unaffected because leaves had a greater specific leaf mass. The reduction in plant leaf area under near‐ambient UV‐B was attributable to: (1) production of 11% fewer leaves per main shoot system and plant, which resulted from an 18% reduction in branch production by main shoots. Leaf production per individual main shoot or branch was not affected; (2) shorter leaf longevity—main shoots contained 14% fewer green leaves at a given time; and (3) smaller individual leaves—leaf elongation rates were 14% slower and mature leaves were 13% shorter.  相似文献   

11.
We investigated the responses of ultraviolet (UV)‐absorbing compounds, chlorophylls a and b, carotenoids and the growth responses of the pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced UV radiation in situ. The moss was exposed to a 52% elevation above the ambient level of erythemally weighted UV‐B radiation, simulating an approximate 20% reduction in the ozone column, in a dry pine forest in Sodankylä, Finland (67 °22′N, 26 °38′E), under arrays of lamps filtered with cellulose diacetate, which transmitted both UV‐B and UV‐A radiation. The moss was also exposed to elevated UV‐A radiation under control arrays of lamps filtered with Melinex polyester and to ambient radiation under arrays with no lamps in them. Effects of enhanced UV radiation on P. schreberi were recorded during the first 3 years of exposure. Enhanced UV‐B radiation did not affect the segment height growth of the moss. The annual dry mass after the second growing season was higher in the UV‐A control than in the other treatments, and dry mass decreased significantly during the third treatment year in both UV treatments compared with the ambient. The specific leaf area of the UV‐B‐treated mosses was significantly higher than the ambient control mosses during the first 2 years. An increase of UV‐absorbing compounds was found in the mosses under enhanced UV‐B radiation compared with the UV‐A control mosses during the first year. Even though the treatment effect on UV‐absorbing compounds was transient, the concentrations of these compounds correlated with the amount of UV‐A and UV‐B radiation received under the elevated UV‐B treatment. A correlation with the irradiation of previous days and preceding month of the sampling day was found. A seasonal reduction occurred in the amount of UV‐absorbing compounds from the beginning of the summer to late summer. The amount of photosynthetic pigments correlated with the amount of photosynthetically active radiation. The moss P. schreberi was thus found to tolerate increasing UV‐B radiation. Our data indicate that P. schreberi tolerates a 52% increase in erythemally weighted UV‐B radiation above ambient, responding during the first few years of exposure by increasing UV‐absorbing compounds and specific leaf area, and decreasing annual dry mass, and then acclimating to its altered radiation environment.  相似文献   

12.
The response of the bipolar moss Sanionia uncinata (Hedw.) Loeske to ambient and enhanced UV‐B radiation was investigated at an Antarctic (Léonie Island, 67°35′ S, 68°20′ W) and an Arctic (Ny‐Alesund, 78°55′ N, 11°56′ E) site, which differed in ambient UV‐B radiation (UV‐BR: 280–320 nm) levels. The UV‐BR effects on DNA damage and photosynthesis were investigated in two types of outdoor experiments. First of all, sections of turf of S. uncinata were collected in an Arctic and Antarctic field site and exposed outdoors to ambient and enhanced UV‐BR for 2 d using UV‐B Mini‐lamps. During these experiments, chlorophyll a fluorescence, chlorophyll concentration and cyclobutyl pyrimidine dimer (CPD) formation were measured. Secondly, at the Antarctic site, a long‐term filter experiment was conducted to study the effect of ambient UV‐BR on growth and biomass production. Additionally, sections of moss turf collected at both the Antarctic and the Arctic site were exposed to UV‐BR in a growth chamber to study induction and repair of CPDs under controlled conditions. At the Antarctic site, a summer midday maximum of 2·1 W m?2 of UV‐BR did not significantly affect effective quantum yield (ΔF/Fm′) and the ratio of variable to maximal fluorescence (Fv/Fm). The same was found for samples of S. uncinata exposed at the Arctic site, where summer midday maxima of UV‐BR were about 50% lower than at the Antarctic site. Exposure to natural UV‐BR in summer did not increase CPD values significantly at both sites. Although the photosynthetic activity remained largely unaffected by UV‐B enhancement, DNA damage clearly increased as a result of UV‐B enhancement at both sites. However, DNA damage induced during the day by UV‐B enhancement was repaired overnight at both sites. Results from the long‐term filter experiment at the Antarctic site indicated that branching of S. uncinata was reduced by reduction of ambient summer levels of UV‐BR, whereas biomass production was not affected. Exposure of specimens collected from both sites to UV‐BR in a growth chamber indicated that Antarctic and Arctic S. uncinata did not differ in UV‐BR‐induced DNA damage. It was concluded that S. uncinata from both the Antarctic and the Arctic site is well adapted to ambient levels of UV‐BR.  相似文献   

13.
Growth of a near‐isogenic line (NIL) for the purple leaf gene Pl of rice with a genetic background of Taichung 65 (T‐65) rice was significantly retarded by supplementary ultraviolet‐B radiation (UV‐B), despite the fact that the amounts of UV‐absorbing compounds and anthocyanins in NIL were significantly higher than those in T‐65. In order to understand the role of flavonoids in UV‐B induced damage protection in T‐65 and the NIL, both the (1) relationships between changes in the steady state of cyclobutane pyrimidine dimer (CPD) levels and changes in accumulation of anthocyanins and UV‐absorbing compounds in leaves with leaf age, and (2) the susceptibility to CPD induction by UV‐B radiation and the ability to photorepair CPD were examined. Although supplementary UV‐B elevated the steady state of CPD levels in leaves in both strains, the level in the leaf of the NIL was higher than that in T‐65 at any time. The susceptibility to CPD induction by short‐term (challenge) UV‐B exposure was lower in the NIL than in T‐65. On the other hand, the CPD photorepair was also lower in the leaves of the NIL than in those of T‐65. The decrease in CPD‐photorepair in the NIL was due to a lowering of the leaf‐penetrating blue/UV‐A radiation, which is effective for photoreactivation by photolyase, by anthocyanins. Thus, accumulation of anthocyanins and UV‐absorbing compounds did not effectively function as screening against damage caused by elevated UV‐B radiation in the NIL, and the retardation of growth in the NIL resulted from its lower ability to photorepair CPD by higher amounts of anthocyanins.  相似文献   

14.
The paper mainly studied the effects of ultraviolet‐B (UV‐B) radiation, nitrogen, and their combination on photosynthesis and antioxidant defenses of Picea asperata seedlings. The experimental design included two levels of UV‐B treatments (ambient UV‐B, 11.02 KJ m−2 day−1; enhanced UV‐B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g m−2 a−1 N) – to determine whether the adverse effects of UV‐B are eased by supplemental nitrogen. Enhanced UV‐B significantly inhibited plant growth, net photosynthetic rate (A), stomatal conductance to water vapor (Gs), transpiration rate and photosynthetic pigment, and increased intercellular CO2 concentration, UV‐B absorbing compounds, proline content, malondialdehyde (MDA) content, and activity of antioxidant enzymes (peroxidase (POD), superoxide dimutase, and glutathione reductase). Enhanced UV‐B also reduced needle DW and increased hydrogen peroxide (H2O2) content and the rate of superoxide radical (O2) production only under supplemental nitrogen. On the other hand, supplemental nitrogen increased plant growth, A, Gs, chlorophyll content and activity of antioxidant enzymes (POD, ascorbate peroxidase, and catalase), and reduced MDA content, H2O2 content, and the rate of O2 production only under ambient UV‐B, whereas supplemental nitrogen reduced activity of antioxidant enzymes under enhanced UV‐B. Carotenoids content, proline content, and UV‐B absorbing compounds increased under supplemental nitrogen. Moreover, significant UV‐B × nitrogen interaction was found on plant height, basal diameter, A, chlorophyll a, activity of antioxidant enzymes, H2O2, MDA, and proline content. These results implied that supplemental nitrogen was favorable for photosynthesis and antioxidant defenses of P.asperata seedlings under ambient UV‐B. However, supplemental nitrogen made the plants more sensitive to enhanced UV‐B, although some antioxidant indexes increased.  相似文献   

15.
The impact of ambient solar UV was studied on the photosynthesis and yield of cotton (Gossypium hirsutum) var. Vikram in a field experiment by excluding either UV-B (<315 nm) or UV-B/A (<400 nm) components of solar spectrum. Cotton plants were grown in cages covered with polyester filters that could specifically cut off UV-B or UV-B/A part of the solar spectrum. The control plants were grown under a filter transmissible to UV. Exclusion of UV enhanced plant height, leaf area, total biomass, and the yield parameters (number and weight of bolls, length of fiber and number of seeds) of cotton. Enhancement in the vegetative growth and yield of the plants could be related to enhanced rate of photosynthesis in the leaves. Polyphasic chlorophyll a fluorescence (OJIP) transients from UV excluded plants gave a higher fluorescence yield at I–P phase. Fluorescence measurements indicated enhanced F v/F m ratio and reduction capacity after exclusion of solar UV. Exclusion also enhanced stomatal conductance and intercellular CO2 concentration and reduced the stomatal resistance. Total soluble proteins were higher after UV exclusion, and in SDS–PAGE analysis, bands corresponding to smaller subunits (14 kDa) of Rubisco were more intensely stained. Experiments indicated suppressive action of ambient UV on carbon fixation and yield of cotton plants. Exclusion of solar UV proved to be beneficial in enhancing the yield of cotton plants.  相似文献   

16.
Recent reduction in the ozone shield due to manufactured chlorofluorocarbons raised considerable interest in the ecological and physiological consequences of UV‐B radiation (λ=280–315 nm) in macroalgae. However, early life stages of macroalgae have received little attention in regard to their UV‐B sensitivity and UV‐B defensive mechanisms. Germination of UV‐B irradiated spores of the intertidal green alga Ulva pertusa Kjellman was significantly lower than in unexposed controls, and the degree of reduction correlated with the UV doses. After exposure to moderate levels of UV‐B irradiation, subsequent exposure to visible light caused differential germination in an irradiance‐ and wavelength‐dependent manner. Significantly higher germination was found at higher photon irradiances and in blue light compared with white and red light. The action spectrum for photoreactivation of germination in UV‐B irradiated U. pertusa spores shows a major peak at 435 nm with a smaller but significant peak at 385 nm. When exposed to December sunlight, the germination percentage of U. pertusa spores exposed to 1 h of solar radiation reached 100% regardless of the irradiation treatment conditions. After a 2‐h exposure to sunlight, however, there was complete inhibition of germination in PAR+UV‐A+UV‐B in contrast to 100% germination in PAR or PAR+UV‐A. In addition to mat‐forming characteristics that would act as a selective UV‐B filter for settled spores under the parental canopy, light‐driven repair of germination after UV‐B exposure could explain successful continuation of U. pertusa spore germination in intertidal settings possibly affected by intense solar UV‐B radiation.  相似文献   

17.
The combined effect of solar radiation (UV-B (280-315 nm), UV-A (315-400 nm) and PAR (400-700 nm)) and vertical mixing (i.e., fluctuating radiation regimes) on the marine dinoflagellates Gymnodinium chlorophorum, Heterocapsa triquetra and Prorocentrum micans was investigated during the austral spring in Patagonia, Argentina. Photosynthesis, measured as radiocarbon incorporation, and accumulation of DNA damage, as cyclobutane pyrimidine dimers (CPDs), were investigated under simulated mixed and non-mixed water column conditions using 3 h incubations centered at local noon. Static samples had significant UVR-induced photoinhibition that was higher in H. triquetra as compared to the other two species. Increasing mixing speed significantly increased UVR-induced inhibition of carbon fixation in G. chlorophorum and H. triquetra. No significant UVR effect was observed in P. micans under any of the mixing regimes. Most of the loss in carbon fixation in G. chlorophorum was due to UV-B while in H. triquetra it was due to UV-A. Part of these responses may be associated to the presence of UV-absorbing compounds which were abundant in P. micans, and low in H. triquetra and in G. chlorophorum. However, other variables such as cell size and active repair might have also influenced our results. We did not detect CPD accumulation in any of the species, probably because of the low solar angle that resulted in very low levels of DNA effective UV-B dose. Our results indicate that exposure to solar UVR in the Patagonia area during spring time (even during ozone depletion events) has a clear impact on photosynthesis and much less or negligible on DNA in the three studied species.  相似文献   

18.
Cuttings of Populus kangdingensis and Populus cathayana originating from altitudes of 3500 and 1500 m in southwestern China, respectively, were grown for one growing season in the field under ambient or ambient plus supplemental ultraviolet‐B (UV‐B) radiation with two levels of nutrients. In both species, enhanced UV‐B radiation significantly increased UV‐B absorbing compounds and guaiacol peroxidase (GPX) activity, while no significant effects were observed in photosynthetic pigments and proline content. On the other hand, cuttings grown with high‐nutrient availability had larger leaf area, higher total biomass and GPX activity as well as higher water use efficiency (WUE) (as measured by stable carbon isotope composition, δ13C) when compared with low‐nutrient conditions, while UV‐B absorbing compounds and ascorbic acid (AsA) content significantly decreased. Differences in responses to enhanced UV‐B radiation and nutrient availability were observed between the two species. Nutrient‐induced increases in chlorophyll a, chlorophyll b and total chlorophyll as well as in carotenoids were greater in P. kangdingensis than in P. cathayana. In P. cathayana, enhanced UV‐B radiation significantly decreased leaf area and total biomass, while it significantly increased WUE and ascorbate peroxidase (APX). In contrast, such changes were not observed in P. kangdingensis. In addition, the effects of enhanced UV‐B radiation on leaf area, total biomass and UV‐B absorbing compounds were closely related to the nutrient status. Our results indicated that P. kangdingensis, which originates from the altitude of 3500 m and is apparently adapted to low‐nutrient and high‐UV‐B habitats, exhibits better tolerance to enhanced UV‐B radiation and greater growth under low‐nutrient availability than does P. cathayana originating from the altitude of 1500 m.  相似文献   

19.
We analysed breeding sounds of the two subspecies of South American Snipe Gallinago paraguaiae paraguaiae and Gallinago paraguaiae magellanica to determine whether they might be different species: loud vocalizations given on the ground, and the tail-generated Winnow given in aerial display. Sounds of the two taxa differ qualitatively and quantitatively. Both taxa utter two types of ground call. In G. p. paraguaiae, the calls are bouts of identical sound elements repeated rhythmically and slowly (about five elements per second (Hz)) or rapidly (about 11 Hz). One call of G. p. magellanica is qualitatively similar to those of G. p. paraguaiae but sound elements are repeated more slowly (about 3 Hz). However, its other call type differs strikingly: it is a bout of rhythmically repeated sound couplets, each containing two kinds of sound element. The Winnow of G. p. paraguaiae is a series of sound elements that gradually increase in duration and energy; by contrast, that of G. p. magellanica has two or more kinds of sound element that roughly alternate and are repeated as sets, imparting a stuttering quality. Sounds of the related Puna Snipe (Gallinago andina) resemble but differ quantitatively from those of G. p. paraguaiae. Differences in breeding sounds of G. p. paraguaiae and G. p. magellanica are strong and hold throughout their geographical range. Therefore we suggest that the two taxa be considered different species: G. paraguaiae east of the Andes in much of South America except Patagonia, and G. magellanica in central and southern Chile, Argentina east of the Andes across Patagonia, and Falklands/Malvinas.  相似文献   

20.
Seasonal variation in leaf phenolic composition may be important for acclimation of plants to seasonal changes in their biotic and abiotic environment. For a realistic assessment of how plants respond to solar UV‐B (280–315 nm) and UV‐A (315–400 nm) radiation, seasonal variation in both environment and plant responses needs to be taken into account. This also has implications for studies concerning stratospheric ozone depletion and resulting increased UV‐B radiation, as other environmental variables and/or plant phenology could interact with UV radiation. To elucidate this, we established a field experiment using plastic films attenuating different parts of the solar UV spectrum. The concentration of individual phenolic compounds was measured during one growing season in leaves of grey alder (Alnus incana) and white birch (Betula pubescens) trees. Our results showed changes in concentration of, e.g. hydrolyzable tannins in birch that suggest an effect of UV‐A alone and e.g. chlorogenic acids in alder indicate a quadratic effect of UV‐B irradiance and both linear and quadratic effect for UV‐A in second‐degree polynomial fits. Further, there was interaction between treatment and sampling time for some individual metabolites; hence, the UV response varied during the season. In addition to the UV effects, three temporal patterns emerged in the concentrations of particular groups of phenolics. Possible implications for both sampling methods and timing are discussed. Moreover, our results highlight differences in responses of the two tree species, which are taken to indicate differences in their ecological niche differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号