首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intravenous injection of substance P (SP) increases renal nerve firing and heart rate in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) by stimulating sympathetic ganglia. Blood pressure is increased in SHRs but lowered in WKYs. This study assesses the role of neurokinin-1 (NK(1)) receptors in mediating the ganglion actions of SP. Rats for functional studies were anesthetized and then treated with chlorisondamine. Renal nerve, blood pressure, and heart rate responses to intravenous injection of the NK(1) receptor agonist GR-73632 were similar but less than those to equimolar doses of SP in SHRs. GR-73632 only slightly increased renal nerve firing and heart rate and lowered blood pressure in WKYs. The NK(1) receptor antagonist GR-82334 (200 nmol/kg iv) blocked the ganglionic actions of GR-73632 and the pressor response to SP in SHRs. It reduced the renal nerve and heart rate responses by 52 and 35%. This suggests that the pressor response to SP is mediated by ganglionic NK(1) receptors and that NK(1) receptors also have a prominent role in mediating the renal nerve and heart rate responses to SP. Quantitative autoradiography showed that NK(1) receptors are more abundant in the superior cervical ganglia of SHRs. RT-PCR showed increased abundance of NK(1) receptor mRNA in SHRs as well. These observations suggest that the greater ganglionic stimulation caused by SP in SHRs is due to upregulation of NK(1) receptors.  相似文献   

2.
Increased dietary sodium enhances both excitatory and inhibitory blood pressure responses to stimulation of the central sympathetic nervous system (SNS) centers. In addition, long-term (hours to days) administration of ANG II increases blood pressure by activation of the SNS. These studies investigated the effects of increased dietary sodium on SNS control of blood pressure during 0- to 24-h infusion of ANG II in conscious, male rats consuming either tap water or isotonic saline (Iso) for 2 to 3 wk. The SNS component (evaluated by ganglionic blockade with trimetaphan) of both control blood pressure and the pressor response to intravenous ANG II was reduced in Iso animals. Furthermore, although the pressor response to intravenous ANG II infusion was similar between groups, the baroreflex-induced bradycardia during the initial 6 h of ANG II infusion was significantly greater, whereas the tachycardia accompanying longer infusion periods was significantly attenuated in Iso animals. These data suggest that in normal rats increased dietary sodium enhances sympathoinhibitory responses during intravenous ANG II.  相似文献   

3.
Summary The effects of intracerebroventricular (icv) injections of angiotensin II (ANG II) on water intake, blood pressure, heart rate, and plasma arginine-vasopressin (AVP) concentration were studied in chronically instrumented adult male Syrian golden hamsters (Mesocricetus auratus). Furthermore, the effects of pharmacological ganglionic blockade, and of vascular AVP receptor blockade, on central ANG II-induced cardiovascular responses were investigated. ANG II (1, 10, and 100 ng, icv) elicited dose-dependent increases in water intake and arterial blood pressure. Heart rate showed a biphasic response with a short initial non dose-dependent tachycardic and a subsequent longer lasting bradycardic phase. Plasma AVP concentration was increased two and a half fold with 100 ng ANG II icv. Both ganglionic blockade and vascular AVP receptor blockade significantly attenuated the central ANG II-induced pressor response. The tachycardic phase of the heart rate response was abolished by ganglionic blockade and the bradycardic phase was significantly diminished by AVP receptor blockade. The results support the hypothesis that brain ANG II may participate in the central control of body fluid volume and in central cardiovascular regulation in conscious hamsters.  相似文献   

4.
Vasopressinergic pathways within the spinal cord have been implicated in the control of cardiovascular function. This study was undertaken to determine the mechanisms whereby intrathecally administered arginine vasopressin (AVP) increases blood pressure and heart rate in anesthetized rats. The cardiovascular responses to intrathecal AVP administration were significantly attenuated after intravenous administration of the ganglionic blocking agent, chlorisondamine chloride, as were the pressor responses following alpha-adrenergic receptor blockade with phentolamine and the heart rate responses following beta-receptor blockade with propranolol. Intrathecal administration of the V1 vasopressin receptor antagonist d(CH2)5Tyr(Me)AVP completely blocked the cardiovascular responses to intrathecal AVP injections, but did not significantly alter the responses to intrathecal substance P injections. There was no evidence for the involvement of the renin-angiotensin system in the pressor responses to intrathecal AVP, as (i) an angiotensin II receptor blocking agent, [Sar1, Val5, Ala8]angiotensin, failed to significantly alter the responses to intrathecal AVP, and (ii) plasma renin levels did not change following administration of the peptide. Intrathecal injections of [3H]AVP suggest that only small amounts of the peptide may cross into the plasma during the time in which the cardiovascular variables are changing. These data provide evidence that intrathecally administered AVP discretely activates the sympathetic outflow to the heart and vasculature, and confirm the neurally mediated nature of the response.  相似文献   

5.
The cardiovascular effects of substance P (SP) microinjections in the nucleus tractus solitarii (NTS) were evaluated in conscious rats. We chose this model because it is an effective way to access some of the cardiovascular effects of neurotransmitters in the NTS without the inconvenience of blunting pathways with anesthetic agents or removing forebrain projections by decerebration. The cardiovascular responses to SP injections were also evaluated after chronic nodose ganglionectomy. We found that, in conscious rats, SP microinjections into the NTS induced hypertension and tachycardia. Unilateral and bilateral SP injections into the NTS caused a slow increase in blood pressure and heart rate that peaked 1.5-5 min after injection and lasted for 20-30 min. Nodose ganglionectomy increased the duration of the pressor and tachycardic effects of SP and enhanced the pressor response. These data show that SP in the NTS is involved in pressor pathways. The supersensitivity to SP seen after nodose ganglionectomy suggests that vagal afferent projections are involved in those pressor pathways activated by SP in the NTS.  相似文献   

6.
The mechanism of cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus (ARCN) was studied in urethane-anesthetized adult male Wistar rats. At the baseline mean arterial pressure (BLMAP) close to normal, ARCN stimulation elicited decreases in MAP and sympathetic nerve activity (SNA). The decreases in MAP elicited by ARCN stimulation were attenuated by either gamma-aminobutyric acid (GABA), neuropeptide Y (NPY), or beta-endorphin receptor blockade in the ipsilateral hypothalamic paraventricular nucleus (PVN). Combined blockade of GABA-A, NPY1 and opioid receptors in the ipsilateral PVN converted the decreases in MAP and SNA to increases in these variables. Conversion of inhibitory effects on the MAP and SNA to excitatory effects following ARCN stimulation was also observed when the BLMAP was decreased to below normal levels by an infusion of sodium nitroprusside. The pressor and tachycardic responses to ARCN stimulation at below normal BLMAP were attenuated by blockade of melanocortin 3/4 (MC3/4) receptors in the ipsilateral PVN. Unilateral blockade of GABA-A receptors in the ARCN increased the BLMAP and heart rate (HR) revealing tonic inhibition of the excitatory neurons in the ARCN. ARCN stimulation elicited tachycardia regardless of the level of BLMAP. ARCN neurons projecting to the PVN were immunoreactive for glutamic acid decarboxylase 67 (GAD67), NPY, and beta-endorphin. These results indicated that: 1) at normal BLMAP, decreases in MAP and SNA induced by ARCN stimulation were mediated via GABA-A, NPY1 and opioid receptors in the PVN, 2) lowering of BLMAP converted decreases in MAP following ARCN stimulation to increases in MAP, and 3) at below normal BLMAP, increases in MAP and HR induced by ARCN stimulation were mediated via MC3/4 receptors in the PVN. These results provide a base for future studies to explore the role of ARCN in cardiovascular diseases.  相似文献   

7.
This study was designed to delineate the medullary and spinal pathways mediating the cardiovascular responses to cold pressor test (CPT) and to identify neurotransmitters in these pathways. Experiments were done in barodenervated, urethane-anesthetized, male Wistar rats. The CPT was performed by immersing the limbs and ventral half of the body of the rat in ice-cold water (0.5 degrees C) for 2 min. CPT elicited an immediate increase in mean arterial pressure (MAP), heart rate (HR), and greater splanchnic nerve activity (GSNA). Bilateral blockade of ionotropic glutamate receptors (iGLURs) in the rostral ventrolateral medullary pressor area (RVLM) significantly attenuated the CPT-induced responses. Bilateral blockade of gamma-aminobutyric acid (GABA) receptors, but not iGLURs, in the nucleus ambiguus (nAmb) significantly reduced the CPT-induced increases in HR, but not MAP. Blockade of spinal iGLURs caused a significant reduction in CPT-induced increases in MAP and GSNA, whereas the increases in HR were reduced to a lesser extent. Combination of the blockade of spinal iGLURs and bilateral vagotomy or intravenous atropine almost completely blocked CPT-induced tachycardia. Midcollicular decerebration significantly reduced CPT-induced increases in MAP and HR. These results indicated that: 1) CPT-induced increases in MAP, HR, and GSNA were mediated by activation of iGLURs in the RVLM and spinal cord, 2) activation of GABA receptors in the nAmb also contributed to the CPT-induced tachycardic responses, and 3) brain areas rostral to the brain stem also participated in the CPT-induced pressor and tachycardic responses.  相似文献   

8.
T.D. Giles  G.E. Sander 《Peptides》1983,4(2):171-175
Leucine-enkephalin (Leu5-ENK) (35 μg/kg) increased heart rate and mean systemic arterial blood pressure following intravenous injection into chronically-instrumented, conscious dogs. Repeated injections at five-minute intervals were not associated with a diminished response. Naloxone (1 mg/kg) pre-treatment inhibited both heart rate and blood pressure increases. Prazosin (1 mg/kg) attenuated the increase in blood pressure but did not influence the heart rate response. Propranolol (1 mg/kg) attenuated the heart rate response but not the pressor response. Clonidine (30 μg/kg) attenuated the positive chronotropic effect of Leu5-ENK. Atropine (1 mg/kg) plus propranolol (1 mg/kg) blocked the heart rate response but the pressor effect was still present. The attenuation of the heart rate response by propranolol and the pressor response by prazosin suggests an adrenergic component to the enkephalin response; the reduction in the heart rate response by clonidine and atropine-propranolol indicates a role for cholinergic mechanisms in the chronotropic response. Hexamethonium (10 mg/kg) blocked the heart rate response and markedly inhibited the pressor response. Vagal interruption attenuated both heart rate and blood pressure responses. It is concluded that intravenous Leu5-ENK stimulates afferent pathways located in fibers which are contained in the vagosympathetic trunk to reflexly increase heart rate and blood pressure.  相似文献   

9.
Electrical stimulation (100 Hz, 1 ms, 150 microA, 10 s) of the anterior hypothalamus in chloralose-anesthetized rats evoked a biphasic pressor response consisting of an initial sharp rise in arterial pressure at the onset of stimulation, followed by a second elevation after cessation of the stimulus. This response was accompanied by an increase in plasma noradrenaline and adrenaline levels. Peripheral sympathectomy with guanethidine selectively abolished the primary phase of the biphasic pressor response, while bilateral removal of the adrenal medulla eliminated only the secondary component. After alpha-adrenergic blockade with phentolamine, the primary phase of the stimulation-induced response was reduced while the secondary pressor component was blocked and replaced by a significant hypotension. The intravenous administration of sotalol enhanced the secondary pressor component without affecting the stimulation-induced plasma noradrenaline and adrenaline responses. After treatment with atropine, the secondary pressor effect was also potentiated, as the reflex bradycardia normally associated with the response was eliminated. A subsequent administration of sotalol in these rats further potentiated the secondary pressor component to stimulation. In rats treated with atropine and sotalol, the sympathetic vasomotor and the adrenomedullary pressor responses could be dissociated according to thresholds and stimulus frequency or current-response characteristics. The results suggest that in intact rats, adrenaline-induced vasodilation and reflex cardiac inhibition contribute to either reduce or mask the adrenomedullary component of the biphasic pressor response evoked by stimulation of the anterior hypothalamus. The study also raises the hypothesis of a dual regulation of both components of the sympathetic system in the anterior hypothalamic region.  相似文献   

10.
Hemodynamic (blood pressure and heart rate) responses of conscious drug-naive rats were studied following intravenous (i.v.) infusion of sterile saline, morphine sulphate, and then naloxone hydrochloride, as well as of other groups previously injected with morphine sulphate. Those groups chronically given morphine sulphate received twice daily injections of morphine sulphate (5 mg/kg, s.c. per injection) for 3 or 6 days before testing with the i.v. infusion of morphine sulphate. Drugs were infused (135 microL/min) through an indwelling femoral venous catheter via a Harvard infusion pump, and blood pressure was recorded from the abdominal aorta via a femoral arterial catheter. Other pretreatment studies were done to determine the receptor mechanisms mediating the blood pressure responses of drug-naive and chronic morphine-treated rats, whereby equimolar doses (0.32 mumol) of specific receptor antagonists were given as a bolus i.v. injection 5 min after saline but before subsequent infusion with morphine sulphate. Intravenous infusion of morphine sulphate (7.5 mg/kg total over 15 min) to drug-native rats caused a transient but precipitous fall in mean arterial pressure and mean heart rate with an associated rise in mean pulse pressure; these effects were blocked in other groups pretreated with atropine. Interestingly, however, rats chronically injected with morphine sulphate for 3 days previously evoked a transient pressor response when subsequently infused i.v. with morphine sulphate, actions that were blocked in other groups when pretreated i.v. with 0.32 mumol of phentolamine, yohimbine, prazosin, or guanethidine. A greater and persistent pressor response occurred following morphine infusion to groups of rats previously injected over 6 days with morphine sulphate, which was associated with tachycardia during the later stages of the 15-min morphine sulphate infusion period. The prolonged pressor and tachycardic responses of this 6-day chronically injected group were completely blocked in another group pretreated i.v. with both phentolamine and propranolol (0.32 mumol). The results suggest that morphine sulphate infusion to conscious, drug-naive rats evokes classical hypotensive effects due to decreases in mean heart rate caused by activation of parasympathetic vagal activity. With 3 or 6 days of chronic morphine sulphate administration beforehand, subsequent i.v. infusion of morphine sulphate evoked pressor actions felt to be caused by a progressive activation of the sympathetic nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Substance P (SP) is a peptide neurotransmitter identified in many central and peripheral neural pathways. Its precise role in human physiology has been difficult to elucidate. We used the selective neurokinin 1 (NK1) antagonist aprepitant as a pharmacological probe to determine the role of endogenous SP in human cardiovascular regulation. We performed a randomized, double-blind, placebo-controlled, crossover trial in healthy subjects. Blockade of endogenous NK1 receptors reduced resting muscle sympathetic activity 38% (P=0.002), reduced systemic vascular resistance by 25% (P=0.021), and increased cardiac index by 47% (P=0.006). This constellation of changes did not, however, alter either blood pressure or heart rate in the supine position. NK1 antagonism also raised orthostatic heart rate change by 38% (P=0.023), although during the incremental postural adjustment on the tilt table neither heart rate nor blood pressure was altered significantly. Despite a mildly attenuated vagal baroreflex with SP blockade, the depressor and pressor responses to nitroprusside and phenylephrine did not differ compared with placebo, suggesting other compensatory mechanisms. NK1 blockade manifests as a decrease in muscle sympathetic nerve activity and systemic vascular resistance. Our study suggests SP exerts a tonic enhancement of sympathetic outflow to some cardiovascular structures via its modulation of the NK1 receptor. Most likely, this ubiquitous neurotransmitter exerts effects at multiple sites that, in the aggregate, are relatively well compensated under many circumstances but may emerge with perturbations. This study is consistent with a role for SP afferents in supporting peripheral vascular resistance.  相似文献   

12.
α-Melanocyte-stimulating hormone (α-MSH) regulates important physiological functions including energy homeostasis and inflammation. Potent analogs of α-MSH, [Nle4, d-Phe7]-α-MSH (NDP-α-MSH) and melanotan-II (MT-II), are widely used in pharmacological studies, but the hemodynamic effects associated with their systemic administration have not been thoroughly examined. Therefore, we investigated the hemodynamic actions of these compounds in anesthetized and conscious C57Bl/6N mice using peripheral routes of administration. NDP-α-MSH and MT-II induced mild changes in blood pressure and heart rate in anesthetized mice compared to the effects observed in conscious mice, suggesting that anesthesia distorts the hemodynamic actions of α-MSH analogs. In conscious mice, NDP-α-MSH and MT-II increased blood pressure and heart rate in a dose-dependent manner, but the tachycardic effect was more prominent than the pressor effect. Pretreatment with the melanocortin (MC) 3/4 receptor antagonist SHU9119 abolished these hemodynamic effects. Furthermore, the blockade of β1-adrenoceptors with metoprolol prevented the pressor effect and partly the tachycardic action of α-MSH analogs, while the ganglionic blocker hexamethonium abrogated completely the difference in heart rate between vehicle and α-MSH treatments. These findings suggest that the pressor effect is primarily caused by augmentation of cardiac sympathetic activity, but the tachycardic effect seems to involve withdrawal of vagal tone in addition to sympathetic activation. In conclusion, the present results indicate that systemic administration of α-MSH analogs elevates blood pressure and heart rate via activation of MC3/4 receptor pathways. These effects and the consequent increase in cardiac workload should be taken into account when using α-MSH analogs via peripheral routes of administration.  相似文献   

13.
14.
目的:分析谷氨酸兴奋下兵脑腹内侧核(NVM)引起升压反应的机制。方法:大鼠脑内或静脉注射不同药物,记录血压和心率的变化。结果:①L-谷氨酸(Glu)兴奋NVM、P物质(SP)注入背内侧核(NDM)室旁核(NPV)或延髓头端腹外侧区(RVL)均引起升压反应;②NVM升压反应可被双侧NDM、NPV或PVL内预先注射[D-Pro^2,D-Phe^7,D-Trp^9]-P物质(SP拮抗剂)衰减,但RVL内注射阿托品无此效应;③酚妥拉明(i.v.)也能使NVM升压反应减小,而心得安或甲基阿托品(i.v.)对该升压反应无影响。结论:兴奋NVM可通过NDM(SP受体),作用于NPV(SP受体)升压区和RVL(SP受体)-交感缩血管神经系统产生升压反应。心交感和心迷走神经不参与该反应。  相似文献   

15.
It has recently been reported that stimulation of the region of the subfornical organ (SFO) elicits an increase in arterial pressure. However, the mechanisms and forebrain neural circuitry that are involved in this cardiovascular response have not been elucidated. The present study was done in urethane-anaesthetized rats to determine whether selective activation of SFO neurons elicit cardiovascular responses and whether these responses were mediated by a pathway involving the paraventricular nucleus of the hypothalamus (PVH). Stimulation sites which required the lowest threshold current (30 microA) to elicit a pressor response and at which the largest rise in mean arterial pressure (MAP; 22 +/- 2 mmHg) was elicited at a constant current intensity (150 microA) were histologically localized in the region of the SFO. Short (mean peak latency; 4 +/- 2 s) and long (mean peak latency; 61 +/- 8 s) latency increases in MAP were observed during and after electrical stimulation of the SFO, respectively. Cardiac slowing accompanied the short latency pressor response and cardioacceleration was observed in most (57%) of the cases to accompany the late pressor response. Microinjection of L-glutamate into the SFO consistently elicited cardiovascular responses qualitatively similar to those observed during electrical stimulation. Ganglionic blockade abolished the short latency increase in MAP and the accompanying bradycardia. However, the long latency pressor and cardioacceleratory responses were not altered by ganglionic blockade and adrenalectomy. Selective bilateral electrolytic or kainic acid lesions of the region of the PVH significantly attenuated the cardiovascular responses elicited by stimulation of the SFO. These data suggest that activation of neurons in the SFO elicit cardiovascular responses partially mediated by sympathetic outflow through a neural pathway involving the PVH.  相似文献   

16.
The effects of activation and blockade of the neurokinin 1 (NK1) receptor in the rostral ventrolateral medulla (RVLM) on arterial blood pressure (ABP), splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, the somato-sympathetic reflex, baroreflex, and chemoreflex were studied in urethane-anesthetized and artificially ventilated Sprague-Dawley rats. Bilateral microinjection of either the stable substance P analog (pGlu5, MePhe8, Sar9)SP(5-11) (DiMe-SP) or the highly selective NK1 agonist [Sar9, Met (O(2))11]SP into the RVLM resulted in an increase in ABP, sSNA, and heart rate and an abolition of phrenic nerve activity. The effects of [Sar9, Met (O(2))11]SP were blocked by the selective nonpeptide NK1 receptor antagonist WIN 51708. NK1 receptor activation also dramatically attenuated the somato-sympathetic reflex elicited by tibial nerve stimulation, while leaving the baroreflex and chemoreflex unaffected. This effect was again blocked by WIN 51708. NK1 receptor antagonism in the RVLM, with WIN 51708 significantly attenuated the sympathoexcitatory response to hypoxia but had no effect on baseline respiratory function. Our findings suggest that substance P and the NK1 receptor play a significant role in the cardiorespiratory reflexes integrated within the RVLM.  相似文献   

17.
The renin-angiotensin system (RAS) plays an important role in the regulation of the cardiovascular system and the kallikrein-kinin system (KKS) appears to counteract most of the RAS effects. In this study the vagal and the sympathetic influences on the heart rate and the baroreflex control of the heart rate were evaluated in transgenics rats with human tissue kallikrein gene expression [TGR(hKLK1)], and transgenics rats with tissue renin overexpression [TGR(mREN2)27]. Heart rate was similar in all groups but mean arterial pressure was higher in mREN2 rats than in kallikrein and control rats (149+/-4 vs. 114+/-3 vs. 113+/-3 mm Hg, respectively). The intrinsic heart rate was lower in mREN2 rats than in kallikrein and control rats (324+/-5 vs. 331+/-3 vs. 343+/-7 bpm). The HR response to atropine was similar but the response to propranolol was higher in kallikrein rats than control group (61+/-7 vs. 60+/-9 vs. 38+/-7 bpm, respectively). The vagal tonus was lower in mREN2 than in SD and hKAL rats (18+/-3 vs. 40+/-6 vs. 35+/-6 bpm) whereas the sympathetic tonus was higher in kallikrein rats (118+/-7 vs. 96+/-1 vs. 81+/-9 bpm in the mREN2 and SD rats), respectively. Baroreflex sensitivity to bradycardic responses was attenuated in mREN2 rats (0.37+/-0.05 vs. 1.34+/-0.08 vs. 1.34+/-0,13 bpm/mm Hg) while the tachycardic responses were unchanged. The bradycardic responses to electrical stimulation of the vagal nerve were depressed in both renin and kallikrein rats (129+/-47 vs. 129+/-22 vs. 193+/-25 bpm in control group in response to 32 Hz). In conclusion: 1.The rats with overexpression of renin showed decreased intrinsic heart rate and impairment of vagal function, characterized by decreased vagal tonus, reduced response of HR to electrical stimulation of vagus nerve, and depressed reflex bradycardia provoked by increases of blood pressure. 2. The rats with overexpression of kallikrein showed an increase of sympathetic activity that regulates the heart rate, characterized by increased HR response to propranolol and increased sympathetic tonus, accompanied by decreased bradycardic responses to electrical vagal stimulation.  相似文献   

18.
The cardiovascular and sympathetic effects of TRH in discrete cardiovascular-related brain nuclei were studied. Microinjections of TRH were made into the nucleus preopticus medialis (POM) of conscious rats and the nucleus tractus solitarius (NTS) of pentobarbitone-anesthetized, artificially respired rats. POM injections (1 μl, 0.8–80 nM) elicited dose dependent pressor and tachycardic responses which were accompanied by increased levels of norepinephrine (NE) and epinephrine (EPI) in the plasma. These pressor/tachycardic effects of TRH were also elicited in adrenal demedullated (ADM-x) rats, but completely abolished in ADM-x rats pretreated with bretylium (30 mg/kg, IA). NTS injections (0.1 μl, 30 and 150 nM) had a short depressor effect on blood pressure (BP) and a delayed increase in heart rate (HR). From these findings we suggest that the POM, a central nucleus in the AV3V region, may be an important forebrain site for autonomic regulation by TRH, mediated through the sympathetic nervous system.  相似文献   

19.
This study examined if the nitric oxide (NO)/L-arginine pathway participates in and if the sympathetic nervous system attenuates the depressor action of human urotensin II. I.V. bolus injections of human urotensin II (0.1-30 nmol/kg) caused dose-dependent decreases in mean arterial pressure (MAP, EC(50) = 2.09 +/- 0.8 nmol/kg; Emax = -18 +/- 3 mmHg ) and increases in heart rate. The depressor response to human urotensin II (3 nmol/kg) was attenuated by approximately 50% in rats with MAP elevated through pretreatment with N(G)-nitro-L-arginine methyl ester (inhibitor of NO synthase), relative to that in rats with MAP elevated to a similar level through a continuous infusion of noradrenaline. Autonomic blockade with i.v. injections of mecamylamine (ganglion blocker) and propranolol (beta-adrenoceptor antagonist) markedly augmented the depressor response to human urotensin II, but almost completely attenuated the tachycardia. The results suggest that the depressor response to human urotensin II is partially mediated via the NO/L-arginine pathway, and is suppressed by activity of the sympathetic nervous system. Furthermore, tachycardic response to human urotensin II is primarily mediated indirectly via baroreflex mechanisms.  相似文献   

20.
Peripheral chemoreceptors located in the carotid bodies are the primary sensors of systemic hypoxia. Although the pattern of responses elicited by peripheral chemoreceptor activation is well established in rats, lambs, and rabbits, the cardiovascular responses to peripheral chemoreflex activation in conscious mice have not been delineated. Here we report that stimulation of peripheral chemoreceptors by potassium cyanide (KCN) in conscious mice elicits a unique biphasic response in blood pressure that is characterized by an initial and robust rise followed by a decrease in blood pressure, which is accompanied by a marked reduction in heart rate. The depressor and bradycardic responses to KCN were abolished by muscarinic receptor blockade with atropine, and the pressor response was abolished by alpha-adrenergic receptor blockade with prazosin, suggesting that vagal and sympathetic drive to the heart and sympathetic drive to the vasculature mediate these cardiovascular responses. These studies characterized the chemoreflex in conscious mice and established the reliability of using them for studying hypoxia-related diseases such as obstructive sleep apnea. In another series of experiments, two methods for analyzing baroreflex sensitivity were compared: the classical pharmacological approach using phenylephrine and sodium nitroprusside (i.e., the Oxford technique) or the sequence method for analyzing spontaneous baroreflex activity. Our findings indicate that both methods are reliable, and the sequence method certainly has its benefits as a predictive tool in the context of long-term noninvasive studies using telemetry. However, for absolute determination of baroreflex function, analysis of spontaneous baroreflex activity should be complemented by the classical pharmacological method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号