首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom''s-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic genome instability, especially the formation of translocations and the sources of intraclonal heterogeneity, both of which are often associated with human cancers.  相似文献   

2.
As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis but show here that dimensions of isolated mitotic sperm chromosomes do not differ. This is consistent with the hypothesis that chromosome scaling does not occur in early embryonic development when cell and spindle sizes are large and anaphase B segregates chromosomes long distances. To recapitulate chromosome scaling during development, we combined nuclei isolated from different stage Xenopus laevis embryos with metaphase-arrested egg extracts. Mitotic chromosomes derived from nuclei of cleaving embryos through the blastula stage were similar in size to replicated sperm chromosomes but decreased in area approximately 50% by the neurula stage, reproducing the trend in size changes observed in fixed embryos. Allowing G2 nuclei to swell in interphase prior to mitotic condensation did not increase mitotic chromosome size, but progression through a full cell cycle in egg extract did, suggesting that epigenetic mechanisms determining chromosome size can be altered during DNA replication. Comparison of different sized mitotic chromosomes assembled in vitro provides a tractable system to elucidate underlying molecular mechanisms.Key words: mitotic chromosomes, Xenopus, egg extracts, intracellular scaling, spindle, embryogenesis, cell division  相似文献   

3.
Summary Storing of triethylene melamine-treated mature spermatozoa in untreated females was found to result in increased frequencies of both sex-linked recessive lethals and translocations involving the Y, II and III chromosomes. Frequencies of these mutations in effectively unstored spermatozoa were determined from progenies produced using sperm 2–4 days after treatment. The increase in translocation frequencies was on the order of 12-fold in progenies from sperm utilized 11–13 days after treatment when the sperm were stored at 25°C, and 3- to 6-fold when comparable sperm were stored at 12.5°C. Consistent but much smaller increases in frequencies of sex-linked lethals were found, with the increase in lethals tending to be correlated with relative increase in translocation frequency in a given experiment. On the assumption that sex-linked lethals related to chromosome breakage would be expected to increase in frequency in the same proportion as do translocations, approximate agreement was obtained when the proportions of breakage-related lethals among unstored lethals were estimated from the data in the four experimental series. The data are thus consistent with the hypothesis that chromosome breaks but not point mutations are realized during storage of treated spermatozoa. Possible interpretations of a differential effect of storage on treated chromosomes are discussed.Studies carried out while the author was a guest investigator at the Institute of Animal Genetics on sabbatical leave from the University of Minnesota.  相似文献   

4.
Quinacrine fluorescent banding patterns of chromosomes 9 and 13 are very similar in mitotic preparations of Mus musculus. Meiotic studies were carried out in male and female mice heterozygous for two translocations involving these chromosomes to determine whether the translocations have a common chromosome. The results indicate that chromosome 9 is involved in the T163H translocation but not in either the T70H or T264Ca translocations. The T70H and T264Ca translocations, but not the T163H, have chromosome 13 in common. These results support the interpretations based on mitotic studies.  相似文献   

5.
6.
Regional control of nondisjunction of the B chromosome in maize   总被引:2,自引:0,他引:2       下载免费PDF全文
Lin BY 《Genetics》1978,90(3):613-627
Control of nondisjunction in the maize B chromosome was studied using a set of B-10 translocations. The study focused on the possible effect of the proximal region of the B long arm. The experimental procedure utilized a combination of a 10B chromosome from one translocation with a B10 from another translocation. The breakpoints of the two translocations were so located that combination of the two elements created a deletion in the proximal region of the B chromosome, but no deletion in chromosome 10. Two different types of deletions were established; one involved a portion of the euchromatic region and the other the entire heterochromatic portion comprising the distal half of the B long arm, except for the small euchromatic tip. Deletion of the heterochromatic portion did not exert any effect on nondisjunction. Deletions of different portions of the euchromatic region produce different responses. Some deletions resulted in typical B nondisjunctional activity; others resulted in the disappearance of this activity. It is concluded that a region within the euchromatic portion of the chromosome is critical for the nondisjunction of B chromosomes. Among 22 translocations with breakpoints in the euchromatic regions, three were proximal to the critical region, 16 were distal and the position of three others was not determined.  相似文献   

7.
ATM is the master regulator of the cellular response to DNA double strand breaks (DSBs). Deficiency of ATM predisposes humans and mice to αβ T lymphoid cancers with clonal translocations between the T cell receptor (TCR) α/δ locus and a 450 kb region of synteny on human chromosome 14 and mouse chromosome 12. While these translocations target and activate the TCL1 oncogene at 14q32 to cause T cell pro-lymphocytic leukemia (T-PLL), the TCRα/δ;14q32 translocations in ATM-deficient T cell acute lymphoblastic leukemia (T-ALL) have not been characterized and their role in cancer pathogenesis remains unknown. The corresponding lesion in Atm-deficient mouse T-ALLs is a chromosome t(12;14) translocation with Tcrδ genes fused to sequences on chromosome 12; although these translocations do not activate Tcl1, they delete the Bcl11b haploinsufficient tumor suppressor gene. To assess whether Tcrδ translocations that inactivate one copy of Bcl11b promote transformation of Atm-deficient cells, we analyzed Atm−/− mice with mono-allelic Bcl11b deletion initiating in thymocytes concomitant with Tcrδ recombination. Inactivation of one Bcl11b copy had no effect on the predisposition of Atm−/− mice to clonal T-ALLs. Yet, none of these T-ALLs had a clonal chromosome t(12;14) translocation that deleted Bcl11b indicating that Tcrδ translocations that inactivate a copy of Bcl11b promote transformation of Atm-deficient thymocytes. Our data demonstrate that antigen receptor locus translocations can cause cancer by deleting a tumor suppressor gene. We discuss the implications of these findings for the etiology and therapy of T-ALLs associated with ATM deficiency and TCRα/δ translocations targeting the 14q32 cytogenetic region.  相似文献   

8.
Menzel MY  Dougherty BJ 《Genetics》1987,116(2):321-330
Adjacent-1 duplication-deficiencies (dp-dfs) are readily recovered from most heterozygous translocations in Gossypium hirsutum L., but frequencies of specific cytotypes differ widely in progenies from heterozygote (♀) x standard crosses. Surprisingly, these frequencies seem to be unrelated to the primary (postmeiotic) frequencies predicted by metaphase I configurations or to the proportion of the chromosome arm that is duplicate or deficient. Deficiencies and duplications from different translocations involving the same arm, as well as the two complementary dp-dfs from the same translocation, seldom exhibit similar frequencies. We conclude that the frequency of each of 101 different adjacent-1 cytotypes is largely idiosyncratic and may depend in part on interactions between the specific chromosome regions that are respectively trisegmental and monosegmental. Few, if any, of these interactions can be between homoeologues of the Ah and Dh genomes. Adjacent-2 dp-dfs are seldom recovered, even if they involve chromosomes that are readily tolerated in monosomic condition. Comparison of monosomes and telosomes with deficiencies suggests that some chromosomes and chromosome regions may be more dosage-sensitive than others, but their identification is not strongly supported by these data.  相似文献   

9.
The human immunoglobulin V lambda locus has been studied in relation to chromosomal translocations involving chromosome 22. DNA probes for two V lambda genes which belong to different subgroups and do not cross hybridize, were used to show that both V lambda genes are located on the Philadelphia chromosome in chronic myeloid leukaemia (CML). Both genes map in band 22q11 to a region that is bounded on the distal side by the breakpoints for CML 9:22 translocations and on the proximal side by the breakpoint for an X:22 translocation. We have found no evidence for rearrangements or amplification of either V lambda gene in CML, in either the chronic or acute phases of the disease. In K562 cells which are derived from the pleural effusion of a patient with Ph1-positive CML, there appears to be no rearrangement of the V lambda genes, but they are both amplified about four times. We have estimated that the minimum size for the amplification unit in K562 cells is 186 kb.  相似文献   

10.
Sperm chromosome complements were analysed in two men who were heterozygous carriers of reciprocal translocations. A total of 363 sperm were karyotyped after in vitro penetration of hamster oocytes, including 180 sperm from a male with a t(1;9)(q22;q31) and 183 from a male with a t(16;19)(q11.1;q13.3). All possible 2:2 and 3:1 meiotic segregations were observed for both translocations. The frequencies of alternate, adjacent 1, adjacent 2, and 3:1 segregations were 46%, 38%, 13%, and 4% for the t(1;9) and 40%, 28%, 31%, and 1% for the t(16;19), respectively. Within the alternate segregation group, the number of normal sperm was not significantly different from the number of sperm carrying a balanced form of the translocation for either of the translocations, as expected. There was no evidence for an interchromosomal effect of either translocation, since the frequencies of numerical abnormalities unrelated to the translocation were within the normal range observed in sperm from control donors. The percentage of sperm with an unbalanced form of the translocation was 54% for the t(1;9) and 61% for the t(16;19).  相似文献   

11.
J. Jenderny 《Human genetics》1992,90(1-2):171-173
Summary Sperm chromosome complements from two males, one heterozygous for the reciprocal translocation t(2;17)(q35;p13) (n = 18) and one for t(3;8) (p13;p21) (n = 73), were analyzed. Only 2:2 segregations were observed with t(2;17): alternate, 56%; adjacent-I, 33%; adjacent-II, 11%. Both 2:2 and 3:1 meiotic segregations occurred in t(3;8): alternate, 34.2%; adjacent-I, 43.8%; adjacent-II, 20.5% and 3:1, 1.4%. A significant excess of chromosomally normal versus balanced sperm complements was observed with both translocation heterozygotes. The frequencies of other chromosome aberrations unrelated to the translocations were 16.7% for t(2;17) and 8.2% for t(3;8). The ratio of X-bearing to Y-bearing sperm was not different from the theoretically expected ratio of 1:1.  相似文献   

12.
Kennison JA 《Genetics》1981,98(3):529-548
Cytological and genetic analyses of 121 translocations between the Y chromosome and the centric heterochromatin of the X chromosome have been used to define and localize six regions on the Y chromosome of Drosophila melanogaster necessary for male fertility. These regions are associated with nonfluorescent blocks of the Y chromosome, as revealed using Hoechst 33258 or quinacrine staining. Each region appears to contain but one functional unit, as defined by failure of complementation among translocations with breakpoints within the same block. The distribution of translocation breakpoints examined appears to be nonrandom, in that breaks occur preferentially in the nonfluorescent blocks and not in the large fluorescent blocks.  相似文献   

13.
Loring Craymer 《Genetics》1984,108(3):573-587
Translocations have long been valued for their segregational properties. This paper extends the utility of translocations by considering recombinational derivatives of pairs of simple reciprocal translocations. Three major derivative structures are noted. One of these derivatives is suitable for use in half-tetrad experiments. A second should find use in recombining markers with translocation breakpoints. The third is an insertional-tandem duplication: it has a section of one chromosome inserted into a heterologue with a section of the latter chromosome tandemly repeated about the breaks of the insert. All of these structures are contained in "constellations" of chromosomes that regularly segregate aneuploid-1 products (informationally equivalent to nonrecombinant adjacent-1 segregants) for one of the parental translocations but do not segregate euploid products. This is in contrast to the parental T1/T2 constellations which segregate euploid products but not aneuploid-1 products. Methods are described for selecting translocation recombinants on the basis of this dichotomy. Several examples of translocation recombinants have been recovered with these techniques, and the recombination frequencies seem to be consistent with those observed for crossovers between inversion breakpoints. Recombinant chromosomes tend to disjoin, but it is observed that the tendency may vary according to the region involved in the recombination, and it is suggested that this difference reflects a difference in chiasmata terminalization times. Special consideration is given to insertional-tandem duplications. Large insertional-tandem duplications are useful in cytogenetic screens. Small insertional-tandem duplications are useful in gene dosage studies and other experiments that require an insert from one chromosome to another. Large duplications can be deleted to form small duplications. To generate a small insert for a specified region, it is only necessary to have one translocation with a breakpoint flanking the region of interest. The second translocation can have a breakpoint quite far from the region: an insertional-tandem duplication containing the region that has one closely flanking breakpoint can be deleted to create a smaller duplication that has two closely flanking breakpoints.  相似文献   

14.
Cytogenetic analysis of 400 sperm from three translocation heterozygotes   总被引:6,自引:4,他引:2  
Summary Sperm chromosome complements were studied in three men who carried reciprocal translocations. A total of 400 sperm were karyotyped after in vitro penetration of hamster eggs: 217 sperm from t(2;9) (q21;p22), 164 from t(4;6) (q28;p23) and 19 from t(7;14) (q21;q13). All possible 22 and 31 meiotic segregations were observed for t(2;9) and t(4;6); for t(7;14) only 22 segregations were observed. For alternate segregations, the number of normal sperm was not significantly different from the number of sperm carrying a balanced form of the translocation in any of the translocations, as theoretically expected. The percentage of sperm with an unbalanced form of the translocation was 57% for t(2;9), 54% for t(4;6) and 47% for t(7;14). There was no evidence for an interchromosomal effect in any of the translocations since the frequencies of numerical abnormalities (unrelated to the translocation) were within the normal range of control donors. The frequencies of X- and Y-bearing sperm did not differ significantly from 50%. Results from a total of 17 reciprocal translocations studied by sperm chromosomal analysis were reviewed.  相似文献   

15.
The genetic constitutions of chromosome 2M of Aegilops comosa and the derived wheat-Ae. comosa translocations were analyzed by molecular cytogenetic techniques. Hybridization of 15 RFLP markers covering the entire length of the group-2 chromosomes revealed that chromosome 2M was structurally rearranged compared to the homoeologous chromosomes of wheat by either a pericentric inversion or a terminal intrachromosomal translocation. The breakpoint of the rearrangement was located in a region between the loci Xpsr131 and Xcdo405, resulting in the translocation of 47% of 2MS to 2ML. This aberrant structure of 2M allowed homoeologous recombination between 2M and its wheat counterpart only in the translocated segment on 2ML. C-banding and genomic in situ hybridization analyses confirmed that all translocation chromosomes consisted of the complete 2MS arm, a large part of 2ML, and very small distal segments derived from 2AS or 2DS, as expected from the aberrant structure of chromosome 2M. Thus, the translocation in the line 2A-2M?4/2 can be described as T2AS-2M?1L???2M?1S and the translocations in the lines Compair and 2D-2M?3/8 as T2DS-2M?1L???2M?1S. RFLP analysis determined the breakpoints in these translocation chromosomes to be within the telomeric 16% of the wheat chromosome arms. The breakpoint of the 2A/2M translocation was between Xbcd348 and Xcdo783, and that of the 2D/2M translocation was between Xcdo783 and Xpsr666. Because the translocation chromosomes retain the structural aberration found in chromosome 2M, further exploitation of the wheat-Ae. comosa translocations for cultivar improvement is questionable.  相似文献   

16.
Interaction of endosperm size factors in maize   总被引:6,自引:2,他引:4       下载免费PDF全文
Birchler JA  Hart JR 《Genetics》1987,117(2):309-317
Crosses involving certain B-A translocations produce a reduced size of endosperm when those regions of the A chromosomes are missing in the sperm that fertilizes the polar nuclei. Previous studies involving the long arm of chromosome 10 showed that additional copies of this segment introduced through the maternal side could not rescue the reduced size phenotype conditioned by the corresponding deficiency in the paternal gamete. In this paper, experiments are described showing that other segments introduced maternally produce an even smaller kernel when fertilized by a sperm missing the same A chromosome segment or other ones that carry factors affecting endosperm size.—The example analyzed in detail involves reciprocal crosses between TB-4Sa and TB-10L19. Extra doses of 4S enhance the small kernel effect normally produced by TB-10L19. The additional copies of 4S have no effect on kernel mass when the 10L segment is present in the paternal contribution to the endosperm. The maternal enhancement by 4S is also effective with crosses by TB-1La but not by TB-1Sb. A survey of inter se crosses of B-A translocations shows that, when the maternal enhancement occurs, it is confined to those regions that themselves give a small kernel effect when used as a male. This correlation is strengthened by the observations that TB-10L19 enhances the small kernel effect of TB-1Sb, but TB-10L32 will not. Since these two B-10L translocations span the best localized small kernel effect region, this result supports the correlation of maternal enhancement regions with the paternal small kernel effect ones.—Because the enhancement can be attributed to a dosage effect and because the enhancement regions are coincident with the small kernel segments, it is postulated that this interacting system is analogous to aneuploid effects in diploid tissues but exhibits unique properties because of the evolutionary history and triploid condition of the endosperm.  相似文献   

17.

Background

Chromosomal rearrangements are a major driving force in shaping genome during evolution. Previous studies show that translocated genes could undergo elevated rates of evolution and recombination frequencies around these genes can be altered. Based on the recently released genome sequences of Triticum urartu, Aegilops tauschii, Brachypodium distachyon and bread wheat, an analysis of interchromosomal translocations in the hexaploid wheat genotype ‘Chinese Spring’ (‘CS’) was conducted based on chromosome shotgun sequences from individual chromosome arms of this genotype.

Results

A total of 720 genes representing putative interchromosomal rearrangements was identified. They were distributed across the 42 chromosome arms. About 59% of these translocated genes were those involved in the well-characterized translocations involving chromosomes 4A, 5A and 7B. The other 41% of the genes represent a large numbers of putative interchromosomal rearrangements which have not yet been described. The number of the putative translocation events in the D subgenome was about half of those presented in either the A or B subgenomes, which agreed well with that the times of interaction between the A and B subgenomes almost doubled that between either of them and the D subgenome.

Conclusions

The possible existence of a large number of interchromosomal rearrangements detected in this study provide further evidence that caution should be taken when using synteny in ordering sequence contigs or in cloning genes in hexaploid wheat. The identification of these putative translocations in ‘CS’ also provide a base for a systematic evaluation of their presence or absence in the full spectrum of bread wheat and its close relatives, which could have significant implications in a wide array of fields ranging from studies of systematics and evolution to practical breeding.
  相似文献   

18.
We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced (2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.  相似文献   

19.
Two bread wheat lines each with a translocation on chromosome 7DL from either Thinopyrum intermedium (TC5 and TC14) or Thinopyrum ponticum (T4m), were hybridized in a ph1b mutant background to enhance recombination between the two translocated chromosomal segments. The frequency of recombinants was high in lines derived from the larger and similar-sized translocations (TC5/T4m), but much lower when derived from different-sized translocations (TC14/T4m). Recombinant translocations contained combinations of resistance genes Bdv2, Lr19 and Sr25 conferring resistance to Barley yellow dwarf virus (BYDV), leaf rust and stem rust, respectively. Their genetic composition was identified using bioassays and molecular markers specific for the two progenitor Thinopyrum species. This set of 7DL Th. ponticum/intermedium recombinant translocations was termed the Pontin series. In addition to Thinopyrum markers, the size of the translocation was estimated with the aid of wheat markers mapped on each of the 7DL deletion bins. Bioassays for BYDV, leaf rust and stem rust were performed under greenhouse and field conditions. Once separated from ph1b background, the Pontin recombinant translocations were stable and showed normal inheritance in successive backcrosses. The reported Pontin translocations integrate important resistance genes in a single linkage block which will allow simultaneous selection of disease resistance. Combinations of Bdv2 + Lr19 or Lr19 + Sr25 in both long and short translocations, are available to date. The smaller Pontins, comprising only 20 % of the distal portion of 7DL, will be most attractive to breeders.  相似文献   

20.
Very few natural polymorphisms involving interchromosomal reciprocal translocations are known in amphibians even in vertebrates. In this study, thirty three populations, including 471 individuals of the spiny frog Quasipaa boulengeri, were karyotypically examined using Giemsa stain or FISH. Five different karyomorphs were observed. The observed heteromorphism was autosomal but not sex-related, as the same heteromorphic chromosomes were found both in males and females. Our results indicated that the variant karyotypes resulted from a mutual interchange occurring between chromosomes 1 and 6. The occurrence of a nearly whole-arm translocation between chromosome no. 1 and no. 6 gave rise to a high frequency of alternate segregation and probably resulted in the maintenance of the translocation polymorphisms in a few populations. The translocation polymorphism is explained by different frequencies of segregation modes of the translocation heterozygote during meiosis. Theoretically, nine karyomorphs should be investigated, however, four expected karyotypes were not found. The absent karyomorphs may result from recessive lethal mutations, position effects, duplications and deficiencies. The phylogenetic inference proved that all populations of Q. boulengeri grouped into a monophyletic clade. The mutual translocation likely evolved just once in this species and the dispersal of the one karyomorph (type IV) can explain the chromosomal variations among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号