首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
There is need for a reliable index of zinc status in humans. Considering the importance of zinc in membrane function, activities of erythrocyte membrane enzymes have been measured in animals of low and normal zinc status as possible indices. Immature rats and neonatal pigs were fed low and adequate zinc diets; the latter was fed both ad libitum and restricted so as to control for food intake effects. Low rates of gain and plasma zinc concentrations demonstrated that animals fed the low zinc diets were of low zinc status. Erythrocyte membranes were prepared and assayed for Na,K-ATPase, 5'-nucleotidase, and calcium-ATPase activities. Na,K-ATPase activity was not affected by zinc status, but 5'-nucleotidase was significantly lower in deficient animals of both species than in controls, whose food intake was restricted to maintain comparable weight (2.76 vs 3.94 nmol/hr/mg of protein in rats and 60.5 vs 119 in pigs). The basal calcium-ATPase activities were also decreased by low zinc status in both species. Addition of calmodulin in vitro stimulated activity two-fold to four-fold and resulted in the same maximal activities for all treatments. The results show that erythrocyte membrane 5'-nucleotidase activity is an index of zinc status in these species. It is suggested that the decreased membrane calcium-ATPase activity in zinc deficiency is caused by a defect in calmodulin metabolism.  相似文献   

2.
The objective of this investigation was to evaluate the effect of 47 mg zinc supplementation on deficiency of zinc in rats during 98 d of restriction of motor activity (hypokinesia), which appeared by higher plasma zinc concentration. One Hundred 13-week-old Sprague-Dawley male rats weighing 360–390 g were used to perform the studies: They were equally divided into four groups: 1. Unsupplemented control animals (UCA); 2. Unsupplemented hypokinetic animals (UHA); 3. Supplemented control animals (SCA); and 4. Supplemented hypokinetic animals (SHA). For the simulation of the effect of hypokinesia (HK), the UHA and SHA were kept in small individual cages made of wood, which restricted their movements in all directions without hindering food and water intake. The SCA and SHA received daily with their food an additional amount of zinc. Before and during the experimental period of 98 d, plasma, urinary and fecal zinc, balance of zinc, food intake, and body weight were determined at different intervals. In the SHA and UHA, the concentration of zinc in plasma, and the elimination of zinc in urine and feces increased significantly when compared with the SCA and UCA, whereas the balance of zinc was negative. The body weight and food intake decreased significantly in the SHA and UHA when compared with the SCA and UCA. The increased plasma concentration of zinc in both the SHA and UHA groups was in contrast to the observed hypozincnemia during prolonged immobilization as during prolonged hospitalization. This reaction suggests that there may be some other mechanisms that are affecting the process of control and regulation of zinc metabolism during prolonged HK. It was concluded that exposure to prolonged restriction of motor activity of rats induces significant increases in plasma concentration, fecal and urinary elimination of zinc in the presence of negative zinc balance and regardless the daily intake of large amounts of zinc with their food, leading to zinc deficiency.  相似文献   

3.
The present study was performed to investigate the effect of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and tissues of rats fed diets containing either coconut oil or fish oil as dietary fat, using a bifactorial experimental design. To ensure an adequate food intake, all the rats were force-fed by gastric tube. Experimental diets contained either 0.8 mg zinc/kg (zinc-deficient diets) or 40 mg zinc/kg (zinc-adequate diets). The effects of zinc deficiency on the activities of lipoprotein lipase in postheparin serum and postprandial triglyceride concentrations and distribution of apolipoproteins in serum lipoproteins depended on the type of dietary fat. Zinc-deficient rats fed the coconut oil diet exhibited a reduced activity of lipoprotein lipase in postheparin serum and adipose tissue, markedly increased concentrations of triglycerides in serum, and a markedly reduced content of apolipoprotein C in triglyceride-rich lipoproteins and high density lipoproteins compared with zinc-adequate rats fed coconut oil. By contrast, zinc-deficient rats fed the fish oil diet did not exhibit reduced activities of lipoprotein lipase in postheparin serum and adipose tissue and increased concentrations of serum lipids compared with zinc-adequate rats fed the fish oil diet. This study suggests that a reduced activity of lipoprotein lipase might contribute to increased postprandial concentrations of serum triglycerides observed in zinc-deficient animals. However, it also demonstrates that the effects of zinc deficiency on lipoprotein metabolism are influenced by dietary fatty acids.  相似文献   

4.
Zinc is a physiological constituent of many human enzymes and also involved in an optimal immune response. Zinc deficiency as well as excessive zinc supplementation lead to disturbed functions of immune cells. In this study with isolated human polymorphonuclear leukocytes the toxic oxygen species generated during the oxidative metabolism were enhanced in presence of zinc ions. However, when the generation of superoxide anion was measured alone it was decreased by zinc. The phagocytic capacity was diminished in presence of zinc ions, too. The release of lysosomal enzymes was not influenced (lysozyme) or weakly inhibited (β-glucuronidase). Our results may indicate an impairment of the microbicidal capacity due to the diminished phagocytosis, but a promotion of inflammatory reactions due to an increase of toxic oxygen species in the presence of zinc ions.  相似文献   

5.
Corticosterone — product of 11-β-hydroxysteroid dehydrogenase type I (11βHSD1) stimulates adipocytes differentiation and activates lipogenic enzymes gene expression in white adipose tissue (WAT) of rats. The aim of the study was to examine the effect of chronic food restriction, often practised by obese individuals trying to lose body mass, on: a) 11βHSD1 gene expression, b) expression of genes associated with adipocyte differentiation (PPARg, SREBP-1, adiponectin), and c) expression of genes associated with lipogenesis in WAT of rats. Two-month old rats were divided into a control and a food restricted group obtaining 50% of food consumed by controls for 30 days. mRNA levels of studied genes in perirenal WAT were analysed by real-time PCR. 11βHSD1 and lipogenic enzymes activities were measured by radiometric conversion assay and by spectrophotometric assay respectively. Food restriction caused significant increase of 11βHSD1, PPARg, SREBP1, adiponectin and lipogenic enzymes mRNA levels in perirenal WAT. 11βHSD1 and some lipogenic enzymes activities were also increased by food restriction. The coordinated up-regulation of 11βHSD1, and genes associated with adipocyte differentiation and lipogenesis by food restriction suggests that such nutritional condition shifts WAT metabolism, that would permit this tissue to synthesize and accumulate triacylglycerols immediately after refeeding.  相似文献   

6.
Zinc and its deficiency diseases   总被引:1,自引:0,他引:1  
The pervasive role of zinc in the metabolic function of the body results from its function as a cofactor of a multitude of enzymes. Zinc is found in every tissue in the body, and because zinc metalloenzymes are found in every known class of enzymes, the metal has a function in every conceivable type of biochemical pathway. Symptoms resulting from zinc deficiency are as diverse as the enzymes with which the metal is associated. If chronic, severe, and untreated, zinc deficiency can be fatal. Less drastic symptoms include infections, hypogonadism, weight loss, emotional disturbance, dermatitis, alopecia, impaired taste acuity, night blindness, poor appetite, delayed wound healing, and elevated blood ammonia levels. Many symptoms of zinc deficiency result from poor diet consumption, but often the most severe symptoms result from other factors including excessive alcohol use, liver diseases, malabsorption syndromes, renal disease, enteral or parenteral alimentation, administration of sulfhydryl-containing drugs, and sickle cell disease. The most severe symptoms of zinc deficiency occur in young children affected with the autosomal-recessive trait, acrodermatitis enteropathica. This disease results in decreased synthesis of picolinic acid which causes an impaired ability to utilize zinc from common food. Because simple laboratory analyses are often not reliable in determining zinc nutriture of a patient, those symptoms caused by suspected zinc deficiency are best verified by the oral administration of zinc dipicolinate. This zinc compound is efficacious and safe and would provide an accurate means of identifying symptoms that do result from zinc deficiency.  相似文献   

7.
BackgroundZinc deficiency is associated with adverse effects on maternal health and pregnancy outcomes. These consequences have been reported over the years from zinc supplementation trials and observational studies whereby outcomes of maternal, foetal and infant health were measured. Owing to the importance of zinc in the functions of epigenetic enzymes, pre-clinical studies have shown that its deficiency could disrupt biological activities that involve epigenetic mechanisms in offspring. Thus, this review assessed the link between epigenetics and the effects of maternal zinc deficiency on the offspring’s health in animal studies.MethodsResearch articles were retrieved without date restriction from PubMed, Web of Science, ScienceDirect, and Google Scholar databases, as well as reference lists of relevant articles. The search terms used were “zinc deficiency”, “maternal zinc deficiency”, “epigenetics”, and “offspring.” Six studies met the eligibility criteria and were reviewed.ResultsAll the eligible studies reported maternal zinc deficiency and observed changes in epigenetic markers on the progeny during prenatal and postnatal stages of development. The main epigenetic markers reported were global and gene specific methylation and/ or acetylation. The epigenetic changes led to mortality, disruption in development, and risk of later life diseases.ConclusionMaternal zinc deficiency is associated with epigenetic modifications in offspring, which induce pathologies and increase the risk of later life diseases. More research and insight into the epigenetic mechanisms could spring up new approaches to combat the associated disease conditions.  相似文献   

8.
Estimation of physiologically active zinc in maize by biochemical assay   总被引:2,自引:0,他引:2  
Summary The enzymes ribonuclease, aldolase and carbonic anhydrase were evaluated as biochemical assays for physiologically active zinc in maize. Seedlings were cultured for 14 or 30 days on a black-earth soil with factorial combinations of phosphorus and zinc fertilizers so as to produce in the leaves varying levels of active zinc at a constant level of total zinc. Enzyme activity was correlated with plant growth, leaf nutrient composition and the occurrence of visual symptoms of zinc deficiency. Ribonuclease and aldolase activities in leaf tissues were insensitive to the changes in active zinc concentration, though aldolase activity was sensitive to phosphorus deficiency. In contrast, leaf carbonic anhydrase activity correlated well with the onset and correction of zinc deficiency symptoms and, as early as 14 days after emergence, was more sensitive to the deficiency than was plant growth. The sensitivity of carbonic anhydrase to changes in active zinc and its specificity for such changes were further examined in 10 to 30 day-old plants grown in solution culture. Zinc was added to plants which had been cultured without zinc for 16 days. A 2.5-fold increase in carbonic anhydrase activity preceded responses by either zinc concentration or plant growth. We propose the use of leaf carbonic anhydrase as an index of active zinc in maize, particularly to supplement inorganic analysis in the diagnosis of zinc deficiency when much of the zinc in the plants is inactive. The assay is simple, is sensitive to and specific for zinc status, and enables early detection of a deficiency before irreversible biochemical events predispose a large yield reduction.  相似文献   

9.
Previous studies suggest that developing rat brain is susceptible to reduced thiamine intake. In order to assess the metabolic basis for this susceptibility, activities of three thiamine-dependent enzymes (pyruvate dehydrogenase complex, -ketoglutarate dehydrogenase and transketolase) were measured in homogenates of brain tissue from the offspring of thiamine-deficient mothers. Control groups of animals were pair-fed to equal food consumption with the thiamine-deficient animals. The study revealed region-selective delays in the establishment of adult activities of thiamine-dependent enzymes as a result of maternal thiamine deficiency. Pyruvate dehydrogenase complex activities in cerebral cortex were significantly reduced (by 20% P < 0.05); -ketoglutarate dehydrogenase activities were also reduced in cerebral cortex (by 30% P < 0.05). In the case of transketolase, enzyme activities were significantly reduced in cerebral cortex, cerebellum and brainstem. Following thiamine replenishment, defective enzyme activities were restored to normal in all cases. However, since thiamine-dependent enzymes are important for the establishment of adult patterns of cerebral energy metabolism and also in myelin synthesis, maternal thiamine deficiency resulting in reductions of thiamine-dependent enzymes at a vulnerable period in brain development could have serious metabolic consequences leading to permanent neurological sequellae in the offspring.  相似文献   

10.
Two experiments were conducted to examine the effect of zinc deficiency on glucose tolerance, and on blood and pancreatic insulin concentrations. In the first study, no significant differences in blood glucose or plasma insulin levels were noted between pair-weighted zinc deficient and zinc sufficient rats after an oral glucose load. In the second experiment, the concentration of pancreatic insulin in pair-fed zinc sufficient rats did not differ significantly from that of zinc deficient rats. However, a zinc deficient group fed ad libitum had significantly lower pancreatic insulin levels, suggesting that food restriction may cause increased pancreatic insulin. Thus, zinc deficiency per se had no apparent effect on oral glucose tolerance or pancreatic insulin concentrations.  相似文献   

11.
This study investigated the influence of feeding frequency on the activities of important degradative enzymes and potentially rate-limiting enzymes in glycolysis and gluconeogenesis in the liver and white epaxial muscle of Macquaria ambigua . Adult animals were either fed daily to satiety (fed), deprived of food for up to 180 days (starved), or starved for 150 days then fed daily to satiety for 30 days (starved/fed). The activities of lipolytic, glycogenolytic and glycolytic enzymes in the livers of starved fish were maintained as long as liver energy stores were available, but became significantly reduced following their exhaustion indicating a decline in metabolism in response to prolonged starvation. The response of epaxial muscle metabolism to changes in food availability was different to that of the liver, as no significant change in the activities of muscle lipolytic or glycogenolytic enzymes were observed in response to starvation. Muscle tissue metabolism was reduced after 60–90 days of starvation, but then returned to prestarvation levels.  相似文献   

12.
Selenium deficiency for periods of 5 or 6 weeks in rats produced an inhibition of tri-iodothyronine (T3) production from added thyroxine (T4) in brain, liver and kidney homogenate. This inhibition was reflected in plasma T4 and T3 concentrations, which were respectively increased and decreased in selenium-deficient animals. Although plasma T4 levels increased in selenium-deficient animals, this did not produce the normal feedback inhibition on thyrotropin release from the pituitary. Selenium deficiency was confirmed in the animals by decreased selenium-dependent glutathione peroxidase (Se-GSH-Px) activity in all of these tissues. Administration of selenium, as a single intraperitoneal injection of 200 micrograms of selenium (as Na2SeO3)/kg body weight completely reversed the effects of selenium deficiency on thyroid-hormone metabolism and partly restored the activity of Se-GSH-Px. Selenium administration at 10 micrograms/kg body weight had no significant effect on thyroid-hormone metabolism or on Se-GSH-Px activity in any of the tissues studied. The characteristic changes in plasma thyroid-hormone levels that occurred in selenium deficiency appeared not to be due to non-specific stress factors, since food restriction to 75% of normal intake or vitamin E deficiency produced no significant changes in plasma T4 or T3 concentration. These data are consistent with the view that the Type I and Type II iodothyronine deiodinase enzymes are seleno-enzymes or require selenium-containing cofactors for activity.  相似文献   

13.
Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency.  相似文献   

14.
Zinc has a wide spectrum of biological activities and its deficiency has been related to various tissue dysfunctions and alterations of normal cell metabolism. Zinc also plays an important role in the antioxidant cellular defenses being a structural element of the non-mitochondrial form of the enzyme superoxide dismutase (CuZnSOD). We have already reported that Zn deficiency induces severe alterations in the rat intestine, that are reverted by treatment with dexamethasone (Dex) or thyroxine (T4). Here we report a paradoxical increase of CuZnSOD activity in rat intestine after 20 and 40 days of zinc deficiency. The increase of CuZnSOD activity is not due to an upregulation of gene expression because both Northern and Western blot analysis indicate that CuZnSOD mRNA and protein levels are not affected by zinc deficiency. A significant increase of lipid peroxidation was also observed in duodenum and jejunum associated with zinc deficiency. Treatment with either Dex or T4 to zinc-deficient rats protects against intestinal oxidative damage and results in SOD activity similar to control rats. Because glutathione peroxidase and catalase activities decreased in zinc deficiency, we speculate that the increase in SOD activity may be associated with an accumulation of hydrogen peroxide that may activate inflammatory molecules, further worsening tissue damage.  相似文献   

15.
The enzymes responsible for the posttranslational processing of precursor proteins to form alpha-amidated peptide hormones require the availability of several cofactors, including zinc, copper and ascorbate ions. Major changes in the availability of these cofactors, as well as the rate of hormone precursor conversion to active hormone, occur during neonatal development, aging and caloric restriction. The effects of 6 weeks of a zinc-deficient (ZD1) diet, pair feeding (PF) and partial zinc deficiency (ZD6) compared to a control diet on the enzymatic cleavage and processing of prepro-TRH to form TRH have been studied in the hypothalamus, brain, and pituitary of young adult male Sprague-Dawley rats. Reverse phase high pressure liquid chromatography (HPLC) revealed that TRH was the major TRH-IR component of the hypothalamus, brain and pituitary. The effect of zinc deficiency on the TRH-Gly-IR HPLC profile of rat brain was to reduce selectively the are of the peaks for TRH-Gly and other low molecular weight pro-TRH peptide fragments with a C-terminal Gly compared to the corresponding TRH-Gly-IR peaks of the control group. We conclude that the processing of prepro-TRH to form TRH is zinc dependent via posttranslational processing enzymes such as carboxypeptidase H.  相似文献   

16.
Recently, attentions are being aroused as to the enzymatic network abnormalities lying behind congenital enzyme deficiency syndromes. We investigated abnormalities in activities of various hydrolytic enzymes in serum of patients with congenital adrenal hyperplasia (CAH, 21-hydroxylase deficiency). Several enzyme activities including trypsin-like enzyme, cathepsin C and esterase were significantly decreased in patients' serum. Especially the esterase activity in patients' serum was reduced to one third of controls and this may have some relations to the abnormal steroid metabolism of these patients. A multivariate analysis showed unexpectedly extensive abnormalities in enzyme interrelationships. These results suggest that wide variety of abnormal metabolism may be related to an apparent enzyme deficiency.  相似文献   

17.
就缺锌对大鼠血液皮质醇和促肾上腺皮质激素(ACTH)含量以及大脑皮质NO合酶活性的影响进行了研究,生长大鼠随机分为3组,即缺锌组,对喂组和缺锌补锌组(先饲喂缺锌饲料21天后再补锌),饲养实验的持续时间为35d。与对喂组比较,缺锌组大鼠血液中皮质醇含量显著升高,而血液ACTH浓度以及大脑皮质NO合酶活性明显降低,此结果提示锌可影响下丘脑-垂体一肾上腺皮质轴和NO合酶的代谢。  相似文献   

18.
The effect of zinc deficiency on calmodulin function was investigated by assessing the in vivo activity of two calmodulin regulated enzymes, adenosine 3′,5′-monophosphate (c-AMP) and guanosine 3′,5′-monophosphate (c-GMP) phosphodiesterase (PDE) in several rat tissues. Enzymatic activities in brain, heart, and testis of rats fed a zinc deficient diet were compared with activities in these tissues from pair fed, zinc supplemented rats. In testis, a tissue in which zinc concentration decreased with zinc deficient diet, enzyme activities were significantly decreased over those in rats who were pair fed zinc supplemented diets. In brain and heart, tissues in which zinc concentrations did not change with either diet, enzymatic activities between the groups were not different. These results indicate that zinc deficiency influences the activity of calmodulin-regulated phosphodiesterases in vivo supporting the hypothesis that zinc plays a role in calmodulin function in vivo in zinc sensitive tissues.  相似文献   

19.
For the past 50 years laboratory animals have been used to ascertain the metabolic bases for signs of zinc deficiency such as sharply reduced food intake, severe dermatitis, slow wound healing, delayed sexual development and function, reduced immunocompetence, severe teratogenic abnormalities, and abnormal metabolism of carbohydrate, lipid, and protein. Current evidence indicates that many of these symptoms may be consequences of inhibition of early steps in nucleic acid metabolism that lead to problems with cellular replication and growth and also that zinc plays an important role in membrane structure and function. Bioavailability of zinc to experimental animals was early shown to be reduced by plant protein diets and to be further reduced by feeding excess calcium. Current evidence indicates phytic acid in plant proteins to be a major inhibitor of zinc absorption, although food-processing methods can either increase or decrease zinc bioavailability. The inhibitory effect of phytic acid is very dependent on dietary calcium in association with phytate and zinc. Usual calcium intakes by humans are much below those demonstrated in animals to cause phytate inhibition of dietary zinc availability.  相似文献   

20.
Diet restriction, prolonging the lifespan of rodents, represents an interesting model for gerontological studies. We analyzed the activity of antioxidant enzymes, Superoxide Dismutase, Catalase and Glutathione Peroxidase in erythrocytes from young, old and old food restricted Wistar rats. Diet restriction was applied feeding the animals on every-other-day schedule starting from the age of 3.5 months. The age-dependent decrease of Catalase and Glutathione Peroxidase activities was prevented by food restriction, whereas Superoxide Dismutase activity was not influenced either by aging and dietary intervention. Present results support the hypothesis that diet restriction increases the protection of cell structure against the peroxidative damage, preserving the activity of antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号