首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is known since the early days of molecular biology that proteins locate their specific targets on DNA up to two orders-of-magnitude faster than the Smoluchowski three-dimensional diffusion rate. An accepted explanation of this fact is that proteins are nonspecifically adsorbed on DNA, and sliding along DNA provides for the faster one-dimensional search. Surprisingly, the role of DNA conformation was never considered in this context. In this article, we explicitly address the relative role of three-dimensional diffusion and one-dimensional sliding along coiled or globular DNA and the possibility of correlated readsorption of desorbed proteins. We have identified a wealth of new different scaling regimes. We also found the maximal possible acceleration of the reaction due to sliding. We found that the maximum on the rate-versus-ionic strength curve is asymmetric, and that sliding can lead not only to acceleration, but also in some regimes to dramatic deceleration of the reaction.  相似文献   

3.
4.
5.
6.
7.
It is widely recognized that the cleaving rate of a restriction enzyme on target DNA sequences is several orders-of-magnitude faster than the maximal one calculated from the diffusion-limited theory. It was therefore commonly assumed that the target site interaction of a restriction enzyme with DNA has to occur via two steps: one-dimensional diffusion along a DNA segment, and long-range jumps coming from association-dissociation events. We propose here a stochastic model for this reaction which comprises a series of one-dimensional diffusions of a restriction enzyme on nonspecific DNA sequences interrupted by three-dimensional excursions in the solution until the target sequence is reached. This model provides an optimal finding strategy which explains the fast association rate. Modeling the excursions by uncorrelated random jumps, we recover the expression of the mean time required for target site association to occur given by Berg et al. in 1981, and we explicitly give several physical quantities describing the stochastic pathway of the enzyme. For competitive target sites we calculate two quantities: processivity and preference. By comparing these theoretical expressions to recent experimental data obtained for EcoRV-DNA interaction, we quantify: 1), the mean residence time per binding event of EcoRV on DNA for a representative one-dimensional diffusion coefficient; 2), the average lengths of DNA scanned during the one-dimensional diffusion (during one binding event and during the overall process); and 3), the mean time and the mean number of visits needed to go from one target site to the other. Further, we evaluate the dynamics of DNA cleavage with regard to the probability for the restriction enzyme to perform another one-dimensional diffusion on the same DNA substrate following a three-dimensional excursion.  相似文献   

8.
DNA-binding nonhistone proteins: DNA site reassociation.   总被引:2,自引:2,他引:0       下载免费PDF全文
The DNA-binding nonhistone proteins (NHP) have been demonstrated to fractionate the rat genome into protein-bound and unbound DNA sequences. Twenty percent of highly sheared rat DNA [approximately 350 base pair (bp)] can be retained on membrane filters as protein complexes. When extracted from the filter and retitrated with the NHP, a 4- to 5-fold enrichment of binding sites is present in the bound DNA with few, if any, sites detected in the unbound DNA. Rat DNA restricted by EcoRI endonuclease can be fractionated by its DNA-binding NHP retention characteristics. Reassociation kinetics of the bound restricted sequences indicate that 45.6% is a subset of total single-copy sequence of the rat genome an 26.9% is repetitive sequences. Cross hybridization studies indicate the repetitive sequences of the bound DNA are not enriched as much as the slow component of the rat genome. Thus a 4-fold enrichment of a subset of the rat genome has been observed via NHP-DNA interactions.  相似文献   

9.
10.
11.
DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contrast, strong confinement favours rotation-coupled sliding to locate targets but lacks structural flexibility to achieve desired specificity. By testing under physiological crowding, our study provides a plausible mechanism on how DNA molecule may help in maintaining an optimal balance between fast hopping and rotation-coupled sliding dynamics, to locate target sites rapidly and form specific complexes precisely.  相似文献   

12.
P M Pryciak  H E Varmus 《Cell》1992,69(5):769-780
Integration of retroviral DNA can serve as a paradigm for cellular functions that are affected by the packaging of DNA into chromatin. We have used a novel polymerase chain reaction-based assay to survey DNA and chromatin for the precise distribution of many integration sites. Integration into naked DNA targets is non-uniform, implying a nucleotide sequence bias. In chromatin, integration occurs preferentially at positions where the major groove is on the exposed face of the nucleosomal DNA helix, generating a 10 bp periodic spacing of preferred sites. Chromatin assembly enhances the reactivity of many sites, so that integration occurs most frequently at sites in nucleosomal, rather than nucleosome-free, regions of minichromosomes. In contrast, integration is prevented in a region occupied by a site-specific DNA-binding protein. Comparisons of integration events mediated by viral nucleoprotein complexes or by two different retroviral integrases show that the integration machinery also affects target site selection.  相似文献   

13.
14.
The binding site on SV40 DNA for a T antigen-related protein.   总被引:191,自引:0,他引:191  
R Tjian 《Cell》1978,13(1):165-179
A protein closely related to SV40 T antigen was purified in a biologically active form from cells infected with the defective adenovirus-SV40 hybrid, Ad2+D2. This 107,000 dalton hybrid protein binds and protects a specific portion of SV40 DNA from digestion by pancreatic DNAase I. Hybridization, endonuclease cleavage and pyrimidine tract analysis of the protected fragments reveal that the D2 hybrid protein binds in a sequential manner to tandem recognition sites which lie within a sequence of 120 nucleotides at position 67 near the origin of SV40 replication.  相似文献   

15.
Many archaea and bacteria have an adaptive immune system known as CRISPR which allows them to recognize and destroy foreign nucleic acid that they have previously encountered. Two CRISPR-associated proteins, Cas1 and Cas2, are required for the acquisition step of adaptation, in which fragments of foreign DNA are incorporated into the host CRISPR locus. Cas1 genes have also been found scattered in several archaeal and bacterial genomes, unassociated with CRISPR loci or other cas proteins. Rather, they are flanked by nearly identical inverted repeats and enclosed within direct repeats, suggesting that these genetic regions might be mobile elements (‘casposons’). To investigate this possibility, we have characterized the in vitro activities of the putative Cas1 transposase (‘casposase’) from Aciduliprofundum boonei. The purified Cas1 casposase can integrate both short oligonucleotides with inverted repeat sequences and a 2.8 kb excised mini-casposon into target DNA. Casposon integration occurs without target specificity and generates 14–15 basepair target site duplications, consistent with those found in casposon host genomes. Thus, Cas1 casposases carry out similar biochemical reactions as the CRISPR Cas1-Cas2 complex but with opposite substrate specificities: casposases integrate specific sequences into random target sites, whereas CRISPR Cas1-Cas2 integrates essentially random sequences into a specific site in the CRISPR locus.  相似文献   

16.
The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of ΔH and TΔS are not strongly correlated with the overall extent of DNA bending, unfavorable ΔHbinding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific ΔSbinding.  相似文献   

17.
18.
The chromosome of the pathogenic Gram-positive bacterium Streptococcus pneumoniae contains between six to 10 operons encoding toxin-antitoxin systems (TAS). TAS are widespread and redundant in bacteria and archaea and their role, albeit still obscure, may be related to important aspects of bacteria lifestyle like response to stress. One of the most abundant TAS is the relBE family, being present in the chromosome of many bacteria and archaea. Because of the high rates of morbility and mortality caused by S. pneumoniae, it has been interesting to gain knowledge on the pneumococcal TAS, among them the RelBE2Spn proteins. Here, we have analyzed the DNA binding capacity of the RelB2Spn antitoxin and the RelB2Spn-RelE2Spn proteins by band-shift assays. Thus, a DNA region encompassing the operator region of the proteins was identified. In addition, we have used analytical ultracentrifugation and native mass spectrometry to measure the oligomerization state of the antitoxin alone and the RelBE2Spn complex in solution bound or unbound to its DNA substrate. Using native mass spectrometry allowed us to unambiguously determine the stoichiometry of the RelB2Spn and of the RelBE2Spn complex alone or associated to its DNA target.  相似文献   

19.
At low to moderate ambient salt concentrations, DNA-binding proteins bind relatively tightly to DNA, and only very rarely detach. Intersegmental transfer due to DNA-looping can be excluded by applying an external pulling force to the DNA molecule. Under such conditions, we explore the targeting dynamics of N proteins sliding diffusively along DNA in search of their specific target sequence. At lower densities of binding proteins, we find a reduction of the characteristic search time proportional to N(-2), with corrections at higher concentrations. Rates for detachment and attachment of binding proteins are incorporated in the model. Our findings are in agreement with recent single molecule studies in the presence of bacteriophage T4 gene 32 protein for which the unbinding rate is much lower than the specific binding rate.  相似文献   

20.
We performed three 3-ns molecular dynamics simulations of d(CGCGAATTCGCG)2 using the AMBER 8 package to determine the effect of salt concentration on DNA conformational transitions. All the simulations were started with A-DNA, with different salt concentrations, and converged with B-DNA with similar conformational parameters. However, the dynamic processes of the three MD simulations were very different. We found that the conformation transition was slow in the solution with higher salt concentration. To determine the cause of this retardation, we performed three additional 1.5-ns simulations starting with B-DNA and with the salt concentrations corresponding to the simulations mentioned above. However, astonishingly, there was no delayed conformation evolution found in any of the three simulations. Thus, our simulation conclusion is that higher salt concentrations slows the A → B conformation transition, but have no effect on the final stable structure. Figure A-DNA and B-DNA. (a) is the canonical A-DNA, and (b) is the canonical B-DNA. Looking from the central major groove  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号