首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the distribution, habitat preference, and social structure of highly migratory species at important life history stages (e.g., breeding and calving) is essential for conservation efforts. We investigated the spatial distribution and habitat preference of humpback whale social groups and singers, in relation to depth categories (<20 m, 20–50 m, and >50 m) and substrate type (muddy and mixed) on a coastal southeastern Pacific breeding ground. One hundred and forty‐three acoustic stations and 304 visual sightings were made at the breeding ground off the coast of Esmeraldas, Ecuador. Spatial autocorrelation analysis suggested singers were not randomly distributed, and Neu's method and Monte Carlo simulations indicated that singers frequented depths of <20 m and mixed substrate. Singletons, and groups with a calf displayed a preference for shallower waters (0–20 m), while pairs and groups with a calf primarily inhabited mixed bottom substrates. In contrast, competitive groups showed no clear habitat preference and exhibited social segregation from other whales. Understanding the habitat preference and distribution of humpback whales on breeding and calving grounds vulnerable to anthropogenic disturbance provides important baseline information that should be incorporated into conservation efforts at a regional scale.  相似文献   

2.
In the context of a changing climate, understanding the environmental drivers of marine megafauna distribution is important for conservation success. The extent of humpback whale breeding habitats and the impact of temperature variation on their availability are both unknown. We used 19 years of dedicated survey data from seven countries and territories of Oceania (1,376 survey days), to investigate humpback whale breeding habitat diversity and adaptability to climate change. At a fine scale (1 km resolution), seabed topography was identified as an important influence on humpback whale distribution. The shallowest waters close to shore or in lagoons were favored, although humpback whales also showed flexible habitat use patterns with respect to shallow offshore features such as seamounts. At a coarse scale (1° resolution), humpback whale breeding habitats in Oceania spanned a thermal range of 22.3–27.8°C in August, with interannual variation up to 2.0°C. Within this range, both fine and coarse scale analyses of humpback whale distribution suggested local responses to temperature. Notably, the most detailed dataset was available from New Caledonia (774 survey days, 1996–2017), where encounter rates showed a negative relationship to sea surface temperature, but were not related to the El Niño Southern Oscillation or the Antarctic Oscillation from previous summer, a proxy for feeding conditions that may impact breeding patterns. Many breeding sites that are currently occupied are predicted to become unsuitably warm for this species (>28°C) by the end of the 21st century. Based on modeled ecological relationships, there are suitable habitats for relocation in archipelagos and seamounts of southern Oceania. Although distribution shifts might be restrained by philopatry, the apparent plasticity of humpback whale habitat use patterns and the extent of suitable habitats support an adaptive capacity to ocean warming in Oceania breeding grounds.  相似文献   

3.
The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40-60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap.  相似文献   

4.
At the breeding grounds of most baleen whales the patchiness and gaps in spatial distribution results from interactions between behavior patterns and environmental conditions. We evaluated the influence of environmental factors (bathymetry and distance from shore with quadratic terms, and wind speed), effort, and spatial autocorrelation effects to predict humpback whale group density in the Southwest Atlantic Ocean. Count data of groups by grid cells were fitted with conditional autoregressive models (CAR). Bayesian inference was performed via integrated nested Laplace approximation. The best‐fit model contained distance from shore and its quadratic term, bathymetry, and the autoregressive component. Occupancy probability was high for the Abrolhos Bank, some cells from the northeast continental shelf and southeast margin, but gaps in occurrence were identified. High densities were estimated in the east continental margin, with the highest density in the Abrolhos Bank, in some cells of the northeast continental margin and in the southernmost area. We report that intermediate distances from the coast, and shallow waters were preferred for breeding and calving activities. We suggest that CAR models may incorporate aggregation mechanisms into habitat modeling and may provide advances in marine mammal analyses by accounting for residual autocorrelation.  相似文献   

5.
From observations of the spatial distribution of humpback whales in the Mexican Pacific between 1981 and 1986, it is possible to recognize four subregions: 1) the southern coast of Baja California; 2) the northern Gulf of California, including the Midriff Islands; 3) the mainland coast of Mexico, including the Isla Isabel and Islas Tres Marias and 4) the Revillagigedo Archipelago. The seasonal distribution of whales near the Mexican mainland and the Revillagigedo Archipelago extends from November to May and is similar to that of other winter breeding grounds, including the Hawaiian Islands. Along the southern coast of Baja California, whales have been observed from September to April, possibly indicating a shorter migratory route. In the northern Gulf of California, however, humpback whales have been reported throughout the year and are occasionally observed feeding during both summer and winter months. The degree of individual movement between the four subregions is still unknown. The number of individual humpback whales identified photographically in recent years suggests that there ate more whales in the Mexican Pacific than previously reported.  相似文献   

6.
本研究阐述了委内瑞拉沿海最常见的海洋鲸类的潜在地理分布情况。通过GIS分析,鲸类分布与地形和深度是相反的,以此可以获得鲸类潜在的分布图。已报告确认了16个物种(有402个目击报告),其中小布氏鲸(Balaenoptera edeni)、座头鲸(Megaptera novaeangliae)、海豚(Delphinus spp.)、圭亚那侏型豚(Sotalia guianensis)、花斑原海豚(Stenella frontalis)、长吻原海豚(Stenella longirostris)和宽吻海海豚(Tursiops truncatus)是最常见的。小布氏鲸和宽吻海海豚有可能分布于整个海岸,包括江河区域。座头鲸则可能季节性地集中分布在大陆架上的海岛沿岸和浅水区域。海豚(Delphinus spp.)有可能分布于高边坡区或沿海上升流区。花斑原海豚可能分布在东北区的西部,中部沿海以及与委内瑞拉海岸平行的岛屿周围。长吻原海豚则分布于浅海和远海区域。在一些高产的生态系统内新的物种可能正在形成,而这些潜在可能的分布图可以作为在高产生态系统内确立关键栖息地的标准,由此我们可以在委内瑞拉水域为鲸类建立新的保护区。  相似文献   

7.
This paper examines environmental and behavioral determinants of the habitat use and preferences of Indo-Pacific humpback dolphins inhabiting the Algoa Bay region on the south Eastern Cape coast of South Africa. In order to quantify the habitat use and preference, two indices were used, the Coefficient of Area Use (AU) and the Activity Index (AI). The dolphins inhabit a narrow strip of shallow, inshore waters of Algoa Bay and remain mostly within 400 m of the shore, in water less than 15 m deep, with no apparent preference for clear or turbid water. Water depth is probably the main factor limiting their inshore distribution, and the 25-m isobath seems to represent the critical depth. Within this confined, inshore distribution, dolphin activities concentrate in the vicinity of rocky reefs-their primary feeding grounds. Dolphin dependence on these shallow-water habitats is evident throughout the year and, consequently, the inshore shallow reefs are identified as the "key habitat" which is of primary importance for humpback dolphins in Eastern Cape waters. The dolphins' dependence on this restricted type of habitat within an already restricted inshore distribution makes them particularly vulnerable to alteration or loss of this habitat.  相似文献   

8.
Here, we examine the distribution, habitat use, and migratory destinations of North Pacific humpback whales wintering off Central America. Coastal boat surveys were conducted off Costa Rica and Panama between 1996 and 2003. In 1999, a broader survey was conducted along most of Central America. Over 23,000 km were surveyed, with the greatest effort off southern Costa Rica. We made 191 sightings of 320 individual humpback whales. Whales were seen between 14°N and 8°N, making this the most southerly of the North Pacific wintering areas. Encounters included singles, adult pairs, singers, and mother/calf pairs. Mother/calf pairs accounted for 27% of all groups sighted, which is one of the highest sighting rates reported among North Pacific wintering areas. Sixty percent of sightings occurred in depths <50 m. Average sea surface temperature was 28.6°C (±1.0 SD). Ninety percent of the 77 unique whales photo‐identified were also seen in the California–Oregon–Washington feeding aggregation. The 1999 survey showed that humpback whales were widely distributed along the Central American coast at relatively low densities. The extensive distribution of animals, the higher proportion of calves, and the almost exclusive migration to a single feeding area contrast with observations in other regions.  相似文献   

9.
10.
Latitudinal preferences within the breeding range have been suggested for Breeding Stock G humpback whales that summer in different feeding areas of the eastern South Pacific. To address this hypothesis, humpback whales photo‐identified from the Antarctic Peninsula and the Fueguian Archipelago (southern Chile) were compared with whales photo‐identified from lower latitudes extending from northern Peru to Costa Rica. This comparison was performed over a time span that includes 18 austral seasons. A total of 238 whales identified from the Antarctic Peninsula and 25 whales from the Fueguian Archipelago were among those photo‐identified at the breeding grounds. Our findings showed that humpback whales from each feeding area were resighted unevenly across the breeding grounds, which suggests a degree of spatial structuring in the migratory pathway. Humpback whales that feed at the Antarctic Peninsula were more likely to migrate to the southern breeding range between northern Peru and Colombia, whereas whales that feed at the Fueguian Archipelago were more likely to be found in the northern range of the breeding ground off Panama. Further photo‐identification efforts and genetic sampling from poorly sampled or unsampled areas are recommended to confirm these reported connectivity patterns.  相似文献   

11.
Robust population size estimates are essential for informing population conservation status. Residency dynamics show population habitat use through time. Population size of Indo-Pacific humpback dolphins (Sousa chinensis) has been extensively investigated in Chinese waters, but their residency dynamics are rarely known. Mark-recapture analysis based on photo-identification records was applied to humpback dolphins in the Dafengjiang River Estuary habitat, one of the key habitats in the northern Beibu Gulf, China. Movement analyses based on lagged identification rate indicated the humpback dolphins spent, on average, 78.5 days inside and 46.9 days outside the survey area. Within the study area, the humpback dolphin abundance was 83 identifiable dolphins. A total of 353–430 humpback dolphins, estimated by POPAN modeling, were involved in this fluid habitat-use dynamic. Robust Design analysis showed strong seasonality in humpback dolphin abundance and emigration probability, implying a movement- and habitat-use pattern likely associated with spatiotemporal distribution of oceanographic characteristics and prey occurrences. Population surveys and conservation measures currently conducted in Chinese waters seldom consider seasonality in movements between habitat patches, which can be addressed by genetic analyses across habitats and cross-matching photo-identification records among neighboring habitats.  相似文献   

12.
For over two decades, passive acoustic monitoring (PAM) methods have been successfully employed around the world for studying aquatic megafauna. PAM-driven studies in Indian waters have so far been relatively very scarce. Furthermore, cetacean populations inhabiting the north western Indian Ocean are far less studied than those in many other regions around the world. This work likely constitutes the first systematic study of the vocal repertoire of humpback whales (Megaptera novaeangliae) at a near-shore site along the western coast of India. Analysis of the observed vocalizations provides an insight into the behaviour of the species. This is significant as it assists in developing a better understanding of the habitat use of the non-migratory Arabian Sea humpback whale population. In contrast, other breeding populations such as those around the North Atlantic, South Pacific and Australia have been relatively well studied. Underwater passive acoustic data were collected during March 2017 using an autonomous logger at a shallow-water site off the eastern edge of Grande Island off the coast of Goa. Humpback whale vocalizations were found to occur over multiple days in the recordings. Time–frequency contours of individual units of vocalization were extracted with the aid of an automatic detection technique and the characteristics of the units were measured. Further, successive units were analysed for formation of phrases and themes. Reconstruction of putative songs from the identified units and themes was not possible due to the limitations imposed by the nature of data collection. Detailed analyses of units, phrases and themes are presented.  相似文献   

13.
SWIMMING SPEEDS OF SINGING AND NON-SINGING HUMPBACK WHALES DURING MIGRATION   总被引:2,自引:0,他引:2  
Limited data exist on swimming speeds of humpback whales ( Megaptera novaeangliae ) and none on swimming speeds of singing whales during migration. We tracked humpback whales visually and acoustically during migration from the breeding grounds past our study site on the east coast of Australia (latitude 26°28'S). The mean swimming speed for whales while singing was 2.5 km/h, significantly less than for non-singing whales with a mean of 4.0 km/h but significantly greater than the mean of 1.6 km/h observed for singing whales on the Hawaiian breeding grounds. Between song sessions, there was no significant difference in speeds between whales that had been singing and other whales. Migration speeds were less for whales while singing but increased during the season. Although humpback whales can swim rapidly while singing (maximum observed 15.6 km/h), they generally do not do so, even during migration. Slower migration by singers would delay their return to the polar feeding areas and may be costly, but may be a strategy to provide access to more females.  相似文献   

14.
In the Southwestern Atlantic Ocean, humpback whales migrate every winter to the Brazilian coast for breeding and calving in the Abrolhos Bank. This breeding stock represents the remnants of a larger population heavily exploited during the beginning of the 20th century. Despite its relevance to conservation efforts, the degree of current genetic variation and the migratory relationship with Antarctic feeding areas for this population are still largely unknown. To examine these questions, we sequenced ∼400 bp of the mitochondrial DNA control region from samples taken off the Brazilian coast (n = 171) and near the Antarctic Peninsula (n = 77). The genetic variability of the Brazilian humpback whale breeding population was high and similar to that found in other Southern Hemisphere breeding grounds. Phylogenetic analysis suggested the existence of a new mitochondrial clade that exists at low frequency among Southern Hemisphere populations. Direct comparison between the Brazilian and the Colombia breeding populations and the Antarctic Peninsula feeding population showed no genetic differentiation between this feeding region and the Colombian breeding area or between feeding Areas I and II near the Antarctic Peninsula. In contrast, these populations were genetically distinct from the Brazilian population. Two humpback whales sampled off South Georgia Islands, in the Scotia Sea, shared identical haplotypes to whales from Brazil. Our results, supported by photo-identification and satellite telemetry data, suggest that the main feeding area of the Southern Hemisphere humpback whale population is likely to be located near the South Georgia/South Sandwich Islands area and not in the Antarctic Peninsula.  相似文献   

15.
We report on a wintering area off the Pacific coast of Central America for humpback whales (Megaptera novaeangliae) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300km), the longest movement undertaken by any mammal. Whales were observed as far north as 11 degrees N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1-28.3 degrees C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.  相似文献   

16.
Data recorded from 24,862 whales killed by British Columbia coastal whaling stations between 1908 and 1967 revealed trends in the abundance, sex ratios, age structure, and distribution of sperm ( Physeter macrocephalus ), fin ( Balaenoptera physalus ), sei ( Balaenoptera borealis ), humpback ( Megaptera novaeangliae ), and blue ( Balaenoptera musculus ) whales. The catch data were analyzed using annual and monthly mean values. Monthly and annual variation in whaling effort was deduced from accounts of the history of British Columbia coastal whaling, and biases arising from changes in effort were considered in the interpretation of the results. During the later years of whaling (1948-1967), the mean lengths of captured whales declined significantly and pregnancy rates dropped to near zero in fin, sei, and blue whales. Monthly patterns in numbers killed revealed a summer migration of sei and blue whales past Vancouver Island, and confirms anecdotal suggestions that local populations of fin and humpback whales once spent extended periods in the coastal waters of British Columbia. Furthermore, the data strongly suggest that sperm whales mated (April-May) and calved (July-August) in British Columbia's offshore waters. The historic whaling records reveal much about the migratory behavior and distribution of the large whales species as they once were, and may continue to be, in the northeastern Pacific. Verifying the persistence of these trends in the remnant populations is a necessary and logical next step.  相似文献   

17.
Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co‐occurring and closely related species on Earth, blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales. We integrated multiple long‐term datasets (line‐transect surveys, whale‐watching records, net sampling, stable isotope analysis, and remote‐sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long‐term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.  相似文献   

18.
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program (QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program (StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).  相似文献   

19.
We estimated humpback and blue whale abundance from 1991 to 1997 off the west coast of the U. S. and Mexico comparing capture-recapture models based on photographically identified animals and line-transect methods from ship-based surveys. During photo-identification research we obtained 4,212 identifications of 824 humpback whales and 2,403 identifications of 908 blue whales primarily through non-systematic small-boat surveys along the coast of California, Oregon, and Washington. Line-transect surveys from NOAA ships in 1991, 1993, and 1996 covered approximately 39,000 km along the coast of Baja California, California, Oregon, and Washington out to 555 km from shore. The nearshore and clumped distribution of humpback whales allowed photographic identification from small boats to cost-effectively sample a substantial portion of the population, but made it difficult to obtain effective samples in the line-transect surveys covering broad areas. The humpback capture-recapture estimates indicated humpback whale abundance increased over the six years (from 569 to 837). The broader more offshore distribution of blue whales made it harder to obtain a representative sample of identification photographs, but was well suited to the line-transect estimates. The line-transect estimates, after correction for missed animals, indicated approximately 3,000 blue whales (CV = 0.14). Capture-recapture estimates of blue whales were lower than this: approximately 2,000 when using photographs obtained from the line-transect surveys as one of the samples. Comparison of the results from the two methods provides validation, as well as insight into potential biases associated with each method.  相似文献   

20.
Sperm whales ( Physeter macrocephalus ) and beaked whales ( Mesoplodon spp. and Ziphius cavirostris ) are deep-diving cetaceans that frequent shelf-edge and Gulf Stream waters off the northeast U. S. coast. Sighting data collected during seven summer (1990, 1991, 1993, and 1995–1998) shipboard surveys were analyzed using a geographic information system to determine habitat use based on bathymetric and oceanographic features. Although sighting rates were lower for beaked whales, both taxa occupied similar habitats. Beaked whales were concentrated at the colder shelf edge, whereas sperm whales were associated with warmer off-shelf water. Mean sighting rates for both taxa were higher in canyon features, but only beaked whale sighting rates were significantly different between canyon and non-canyon habitat (Wilcoxon signed rank test P = 0.007). Within the shared habitat, the two taxa were separated at fine-scale based on oceanographic features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号