首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

BACKGROUND:

Hyperdiploid pre-B-cell acute lymhoblastic leukemia (pre-B-ALL) is a common form of childhood leukemia with very good prognosis with present day chemotherapy. However, the chromosomal composition of the hyperdiploidy has not been extensively studied and possible mechanism for this pathology remains so far conjectural.

OBJECTIVE:

To analyze the pattern of chromosome involvement in a cohort of childhood hyperdiploid pre-B-ALL from India and from this pattern to develop an understanding on the causation of such pathology. Whether such patients also carry translocations and FLT3 mutations in addition to their hyperdiploid karyotype.

MATERIALS AND METHODS:

One hundred and twenty-six childhood pre-B-ALL patients were studied. Bone marrow aspirate of these patients were evacuated for morphology, FAB classification, immunophenotyping and both conventional and molecular cytogenetics.

RESULTS:

Of 126 patients with pre-B-ALL (age 2-15 years), 90 patients with abnormal karyotype showed 50 with hyperdiploid karyotype (50/90 i.e. 55.5%). Chromosomes 9, 10, 14, 17, 18, 20 and 21 were more often involved in hyperdiploidy. Chromosome 21 duplication was present in 92% of the cases. Chromosomes 5, 15, 16, 17 and Y were less often involved (18-20%) in hyperdiploidy. About 44% of patients with hyperdiploidy had additional karyotypic abnormality of which TEL-AML1 was predominant (24%). Chromosome loss was rare and accounted for 20% of the cases only. We did not find any FLT3 mutation in our patients.

CONCLUSION:

In this study, the pattern of chromosome involvement in hyperdiploid karyotype of ALL patients is same as other studies except some chromosomes like 1, 6, 11, 12, 19 and 22 have some more frequent involvement than other studies. This study also showed the occurrence of TEL/AML1 fusion is more (19.8%) than other reports from India.  相似文献   

2.

Background

NPM1 gene at chromosome 5q35 is involved in recurrent translocations in leukemia and lymphoma. It also undergoes mutations in 60% of adult acute myeloid leukemia (AML) cases with normal karyotype. The incidence and significance of NPM1 deletion in human leukemia have not been elucidated.

Methodology and Principal Findings

Bone marrow samples from 145 patients with myelodysplastic syndromes (MDS) and AML were included in this study. Cytogenetically 43 cases had isolated 5q-, 84 cases had 5q- plus other changes and 18 cases had complex karyotype without 5q deletion. FISH and direct sequencing investigated the NPM1 gene. NPM1 deletion was an uncommon event in the “5q- syndrome” but occurred in over 40% of cases with high risk MDS/AML with complex karyotypes and 5q loss. It originated from large 5q chromosome deletions. Simultaneous exon 12 mutations were never found. NPM1 gene status was related to the pattern of complex cytogenetic aberrations. NPM1 haploinsufficiency was significantly associated with monosomies (p<0.001) and gross chromosomal rearrangements, i.e., markers, rings, and double minutes (p<0.001), while NPM1 disomy was associated with structural changes (p = 0.013). Interestingly, in complex karyotypes with 5q- TP53 deletion and/or mutations are not specifically associated with NPM1 deletion.

Conclusions and Significance

NPM1/5q35 deletion is a consistent event in MDS/AML with a 5q-/-5 in complex karyotypes. NPM1 deletion and NPM1 exon 12 mutations appear to be mutually exclusive and are associated with two distinct cytogenetic subsets of MDS and AML.  相似文献   

3.

Background

Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.

Methodology/Principal Findings

Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.

Conclusions/Significance

These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.  相似文献   

4.

Background

Molecular characterisation of normal karyotype acute myeloid leukemia (NK-AML) allows prognostic stratification and potentially can alter treatment choices and pathways. Approximately 45–60% of patients with NK-AML carry NPM1 gene mutations and are associated with a favourable clinical outcome when FLT3-internal tandem duplications (ITD) are absent. High resolution melting (HRM) is a novel screening method that enables rapid identification of mutation positive DNA samples.

Results

We developed HRM assays to detect NPM1 mutations and FLT3-ITD and tested diagnostic samples from 44 NK-AML patients. Eight were NPM1 mutation positive only, 4 were both NPM1 mutation and FLT3-ITD positive and 4 were FLT3-ITD positive only. A novel point mutation Y572C (c.1715A>G) in exon 14 of FLT3 was also detected. In the group with de novo NK-AML, 40% (12/29) were NPM1 mutation positive whereas NPM1 mutations were observed in 20% (3/15) of secondary NK-AML cases. Sequencing was performed and demonstrated 100% concordance with the HRM results.

Conclusion

HRM is a rapid and efficient method of screening NK-AML samples for both novel and known NPM1 and FLT3 mutations. NPM1 mutations can be observed in both primary and secondary NK-AML cases.  相似文献   

5.

Objectives

Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication. As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished effects of TKI treatment of mutant FLT3-expressing cells.

Methods

We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying observed synergy.

Results and Conclusions

Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3 inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia activity in a cytoprotective microenvironment.  相似文献   

6.

Background

Gain-of-function mutations of tyrosine kinase FLT3 are frequently found in acute myeloid leukemia (AML). This has made FLT3 an important marker for disease diagnosis and a highly attractive target for therapeutic drug development. This study is intended to generate a sensitive substrate for assays of the FLT3 enzymatic activity.

Methods

We expressed in Escherichia coli cells a glutathione S-transferase (GST) fusion protein designated GST-FLT3S, which contains a peptide sequence derived from an autophosphorylation site of FLT3. The protein was used to analyze tyrosine kinase activity of baculovirus-expressed FLT3 and crude cell extracts of bone marrow cells from AML patients. It was also employed to perform FLT3 kinase assays for FLT3 inhibitor screening.

Results

GST-FLT3S in solution or on beads was strongly phosphorylated by recombinant proteins carrying the catalytic domain of wild type FLT3 and FLT3D835 mutants, with the latter exhibiting much higher activity and efficiency. GST-FLT3S was also able to detect elevated tyrosine kinase activity in bone marrow cell extracts from AML patients. A small-scale inhibitor screening led to identification of several potent inhibitors of wild type and mutant forms of FLT3.

Conclusions

GST-FLT3S is a sensitive protein substrate for FLT3 assays. It may find applications in diagnosis of diseases related to abnormal FLT3 activity and in inhibitor screening for drug development.  相似文献   

7.

Background

Robo4 is involved in hematopoietic stem/progenitor cell homeostasis and essential for tumor angiogenesis. Expression of Robo4 was recently found in solid tumors and leukemia stem cells. However, the clinical implications of Robo4 expression in patients with acute myeloid leukemia (AML) remain unclear.

Methods

We investigated the clinical and prognostic relevance of mRNA expression of Robo4 in bone marrow (BM) mononuclear cells from 218 adult patients with de novo AML. We also performed immunohistochemical staining to assess the Robo4 protein expression in the BM biopsy specimens from 30 selected AML patients in the cohort.

Results

Higher Robo4 expression was closely associated with lower white blood cell counts, expression of HLA-DR, CD13, CD34 and CD56 on leukemia cells, t(8;21) and ASXL1 mutation, but negatively correlated with t(15;17) and CEBPA mutation. Compared to patients with lower Robo4 expression, those with higher expression had significantly shorter disease-free survival (DFS) and overall survival (OS). This result was confirmed in an independent validation cohort. Furthermore, multivariate analyses showed that higher Robo4 expression was an independent poor prognostic factor for DFS and OS in total cohort and patients with intermediate-risk cytogenetics, irrespective of age, WBC count, karyotype, and mutation status of NPM1/FLT3-ITD, and CEBPA.

Conclusions

BM Robo4 expression can serve as a new biomarker to predict clinical outcomes in AML patients and Robo4 may serve as a potential therapeutic target in patients with higher Robo4 expression.  相似文献   

8.

BACKGROUND:

CYP3A5 was observed to be an important genetic contributor to inter individual differences in CYP3A-dependent drug metabolism in acute leukemic patients. Loss of CYP3A5 expression was mainly conferred by a single nucleotide polymorphism at 6986A>G (CYP3A5*3). We investigated the association between CYP3A5*3 polymorphism and acute leukemia.

MATERIALS AND METHODS:

Two hundred and eighty nine acute leukemia cases comprising of 145 acute lymphocytic leukemia (ALL), 144 acute myeloid leukemia and 241 control samples were analyzed for CYP3A5*3 polymorphism using PCR-RFLP method. Statistical analysis was performed with SPSS version (15.0) to detect the association between CYP3A5*3 polymorphism and acute leukemia.

RESULTS:

The CYP3A5*3 polymorphism 3/3 genotype was significantly associated with acute leukemia development (χ2- 133.53; df-2, P 0.000). When the data was analyzed with respect to clinical variables, mean WBC, blast % and LDH levels were increased in both ALL and AML cases with 3/3 genotype. The epidemiological variables did not contribute to the genotype risk to develop either AML or ALL.

CONCLUSION:

The results suggest that the CYP3A5*3 polymorphism might confer the risk to develop ALL or AML emphasizing the significance of effective phase I detoxification in carcinogenesis. Association of the polymorphism with clinical variables indicate that the 3/3 genotype might also contribute to poorer survival of the patients.  相似文献   

9.

Background

Nucleophosmin-1 (NPM1) is an abundant multifunctional protein, implicated in a variety of biological processes and in the pathogenesis of several human malignancies. Its C-terminal domain (CTD) is endowed with a three helix bundle and we demonstrated that several regions within it, associated with acute myeloid leukemia (AML), have a strong tendency to form beta amyloid-like assemblies toxic for cells. The central helix of the bundle (H2) resulted the most amyloidgenic region; here we aim to model the cytoxicity processes of the H2 sequence and getting clues of a potential involvement in toxicity of the interaction between CTDs and cellular membranes.

Methods

We investigated the interaction of CTD-NPM1 regions with model membranes through fluorescence, SPR, CD and ESR spectroscopies and the localization of NPM1 by immune-fluorescence in leukemic cells.

Results

Our findings indicate that investigated regions are able to interact with membranes with different mechanisms and outlined the importance of the presence of cholesterol.

Conclusions

H2 showed a preference of interaction with membrane containing cholesterol determining a sensitive fluidification of the bilayer, while N-term H2 causes a stiffening of central and outer regions of the lipid system. Noticeably, NPM1 mut A demonstrated to thicken at the plasma membrane, differently from wt. These findings were corroborated by diverse mechanisms of interaction of CTDs toward membrane models in vitro.

General significance

This study suggests that the direct interaction of several regions of NPM1CTD with cellular membranes could be implicated in diseases where NPM1 is mutated and/or where its overexpression is cytoxic.  相似文献   

10.

Objectives

Clinical responses achieved with FLT3 kinase inhibitors in acute myeloid leukemia (AML) are typically transient and partial. Thus, there is a need for identification of molecular mechanisms of clinical resistance to these drugs. In response, we characterized MOLM13 AML cell lines made resistant to two structurally-independent FLT3 inhibitors.

Methods

MOLM13 cells were made drug resistant via prolonged exposure to midostaurin and HG-7-85-01, respectively. Cell proliferation was determined by Trypan blue exclusion. Protein expression was assessed by immunoblotting, immunoprecipitation, and flow cytometry. Cycloheximide was used to determine protein half-life. RT-PCR was performed to determine FLT3 mRNA levels, and FISH analysis was performed to determine FLT3 gene expression.

Results and Conclusions

We found that MOLM13 cells readily developed cross-resistance when exposed to either midostaurin or HG-7-85-01. Resistance in both lines was associated with dramatically elevated levels of cell surface FLT3 and elevated levels of phosphor-MAPK, but not phospho-STAT5. The increase in FLT3-ITD expression was at least in part due to reduced turnover of the receptor, with prolonged half-life. Importantly, the drug-resistant phenotype could be rapidly reversed upon withdrawal of either inhibitor. Consistent with this phenotype, no significant evidence of FLT3 gene amplification, kinase domain mutations, or elevated levels of mRNA was observed, suggesting that protein turnover may be part of an auto-regulatory pathway initiated by FLT3 kinase activity. Interestingly, FLT3 inhibitor resistance also correlated with resistance to cytosine arabinoside. Over-expression of FLT3 protein in response to kinase inhibitors may be part of a novel mechanism that could contribute to clinical resistance.  相似文献   

11.
Many of the mutations contributing to leukemogenesis in acute myeloid leukemia have been identified. A common activating mutation is an internal tandem duplication (ITD) mutation in the FLT3 gene that is found in approximately 25% of patients and confers a poor prognosis. FLT3 inhibitors have been developed and have some efficacy, but patients often relapse. Levels of FLT3 ligand (FL) are significantly elevated in patients during chemotherapy and may be an important component contributing to relapse. We used a mouse model to investigate the possible effect of FL expression on leukemogenesis involving FLT3-ITD mutations in an in vivo system. FLT3ITD/ITD FL−/− (knockout) mice had a statistically significant increase in survival compared with FLT3ITD/ITD FL+/+ (wildtype) mice, most of which developed a fatal myeloproliferative neoplasm. These findings suggest that FL levels may have prognostic significance in human patients. We also studied the effect of FL expression on survival in a FLT3-ITD NUP98–HOX13 (NHD13) fusion mouse model. These mice develop an aggressive leukemia with short latency. We asked whether FL expression played a similar role in this context. The NUP98-HOX13 FLT3ITD/wt FL−/− mice did not have a survival advantage, compared with NUP98-HOX13 FLT3ITD/wt FL+/+ mice (normal FL levels). The loss of the survival advantage of the FL knockout group in the NUP98–HOX13 model suggests that adding a second mutation changes the effect of FL expression in the context of more aggressive disease.Abbreviations: AML, acute myeloid leukemia; FL, FLT3 ligand; FLT3, FMS-like tyrosine kinase 3; ITD, internal tandem duplication; MPN, myeloproliferative neoplasmFMS-like tyrosine kinase 3 (FLT3) is normally activated by binding of its ligand (FL) to 2 FLT3 molecules, causing them to dimerize, autophosphorylate, and activate downstream targets.20,26,31 Although FL expression is relatively ubiquitous, the FLT3 receptor is found predominantly on hematopoietic cells and has an important role in hematopoiesis.6,13,24 Several mutations in the FLT3 gene can lead to constitutive activation that occurs independent of ligand binding and leads to activation of downstream targets; these mutations typically are found in patients with acute myeloid leukemia (AML). The most common mutation described in AML is an internal tandem duplication (ITD) that occurs in the juxtamembrane domain of FLT3. The ITD mutations vary in length,17,25 but these forms all constitutively activate FLT3 kinase activity to result in autophosphorylation and phosphorylation of its downstream targets.4,14,28,32 The ITD mutation is seen in approximately 25% of adult AML cases and is associated with a poor prognosis.18,19,23Despite the fact that FTL3-ITD is constitutively activated, some evidence indicates that FL may continue to play a role in FLT3 signaling and affect AML prognosis.35 Elevated plasma levels of FL have been reported in patients that have undergone chemotherapy.2,30 In addition, elevated levels of FL have been shown to increase the amount of FLT3 inhibitor needed to reduce the levels of phosphorylated FLT3-ITD in a cell line (Molm14) model.8,21,34 When a lentivirus was used to introduce a FLT3-ITD mutation into mouse embryonic fibroblast cells from FL-knockout mice, the addition of FL to the culture media resulted in an increase in the level of phosphorylated FLT3, further supporting the idea that FL may play a role in FLT3-ITD–associated AML.33 These previous models have all used cell lines, cultured cells, and plasma from patient samples to address the potential importance of FL expression in cases where an ITD mutation is present.Here we use primary hematopoietic cells from a combination of genetically engineered mouse models to investigate the role of FLT3 and FL in the pathogenesis of AML. The first model is a FLT3-ITD knockin mouse model with an 18-bp insertion in the juxtamembrane domain of FLT3 that was generated and characterized by our lab. This mouse model consistently and predictably develops myeloproliferative neoplasia (MPN) with moderately elevated WBC counts, splenomegaly, and myeloid expansion in the bone marrow, as evidenced by histopathologic changes and increased granulocytic/ monocytic fractions by flow cytometry.11 A small percentage (7%; 9 of 129) of the FLT3-ITD homozygous (FLT3ITD/ITD) mice spontaneously developed fully transformed leukemia.10 The second mouse model uses transgenic expression of a Nup98–Hox13 fusion (NHD13) that is expressed primarily in hematopoietic tissues. Mice that carry this mutation typically develop a myelodysplastic syndrome that often progresses to acute leukemia after a long lag time.12 When these mice were bred to our FLT3-ITD mice, the resulting double-mutant Nup98–Hox13 (NHD13) FLT3wt/ITD mice predominantly developed an AML with minimal differentiation and demonstrated a markedly shorter latency to disease. Interestingly, a subset of mice display loss of heterozygosity of the wildtype Flt3 allele in the bone marrow7 as occurs in a fraction of human FLT3-ITD AML patients.22,29 The third model is a FL-knockout mouse model that was developed at Immunex (Seattle, WA) and is currently commercially available. These mice have the majority of the FL extracellular domain coding region disrupted by insertion of a PKG–Neo cassette. These mice demonstrated reduced cellularity in the bone marrow and an overall reduction in hematopoietic precursors, especially of the myeloid and lymphoid lineages.16To examine the effect of FL expression on disease conferred by a FLT3-ITD mutation, we used 2 genetically engineered mouse models: the first is the model of MPN generated by the FLT3ITD/ITD mutation alone. The second was a leukemia model that is generated by the combination of a FLT3wt/ITD together with a NHD13 mutation. Into both of these models, we bred mice that were either wildtype for FL or that had FL knocked out. We then characterized survival and disease phenotype data from each cohort to ascertain the effect of FL expression on MPN and AML generated by FLT3-ITD expression.  相似文献   

12.

Objective

Mutations in the gene encoding isocitrate dehydrogenease 1 (IDH1) occur in various hematopoietic tumors including acute myeloid leukemia (AML), myeloproliferative neoplasms and myelodysplastic syndromes. IDH1 mutations are significant in both diagnosis and prognosis of these conditions. In the present study we determined the prevalence and clinical significance of IDH1 mutations in 349 samples from newly diagnosed AML patients.

Results

Of the 349 AML patient specimens analyzed, 35 (10.03%) were found to have IDH1 mutations including 4 IDH1 R132 mutations and 31 non-R132 mutations. IDH1 non-R132 mutations were largely concentrated within AML-M1 (35.72%, p<0.01). We identified five IDH1 mutations that were novel to AML: (1) c.299 G>A, p.R100Q; (2) c.311G>T, p.G104V; (3) c.322T>C, p.F108L; (4) c.356G>A, p.R119Q; and (5) c.388A>G, p.I130V. In addition, we identified three IDH1 mutations that were previously described in AML. The frequency of IDH1 mutations in AML patients with normal karyotype was 9.9%. IDH1 non-R132 mutations were concurrent with mutations in FLT3-ITD (p<0.01), CEBPA (p<0.01), and NRAS (p<0.01), as well as the overexpression of MN1 (p<0.01) and WT1(p<0.01). The overall survival (OS) in the patients with IDH1 non-R132 mutations compared to patients without IDH1 mutations don''t reach statistically significance (median 521 days vs median: not reached; n.s.).

Conclusion

IDH1 non-R132 mutations occurred frequently in newly diagnosed adult Chinese AML patients, and these mutations were associated with genetic alterations. The OS was not influenced by IDH1 non-R132 mutations in the present study.  相似文献   

13.

Background

We aimed to examine the expression level of Nucleophosmin (NPM1) protein in colon cancer tissues and to investigate the potential role of NPM1 in the regulation of cell migration and invasiveness.

Methods

Immunohistochemical assay was performed to examine the expression pattern of NPM1 in 31 groups of colonic carcinoma samples, including colon tumors, adjacent normal tissues, and matched metastatic lymph nodes from the same patients. Small interfering RNA technique and exogenous expression of wild type NPM1 methods were used to further verify the function of NPM1.

Results

High-expression of NPM1 correlates with lymph node metastasis (P = 0.0003) and poor survival rate of human colon cancer patients (P = 0.017). SiRNA-mediated reduction of NPM1 was also shown to inhibit the migration and invasiveness of metastatic colon cancer HCT116 cell line. In addition, the exogenous expression of NPM1 in HT29 cells, a NPM1 low expression and low invasive colon cancer cell line, enhanced cell migration and invasiveness along with increased cell proliferation.

Conclusions

The current study uncovered the critical role of NPM1 in the regulation of colon cancer cells migration and invasion, and NPM1 may serve as a potential marker for the prognosis of colon cancer patients.  相似文献   

14.

Background

Previous research suggested that single gene expression might be correlated with acute myeloid leukemia (AML) survival. Therefore, we conducted a systematical analysis for AML prognostic gene expressions.

Methods

We performed a microarray-based analysis for correlations between gene expression and adult AML overall survival (OS) using datasets GSE12417 and GSE8970. Positive findings were validated in an independent cohort of 50 newly diagnosed, non-acute promyelocytic leukemia (APL) AML patients by quantitative RT-PCR and survival analysis.

Results

Microarray-based analysis suggested that expression of eight genes was each associated with 1-year and 3-year AML OS in both GSE12417 and GSE8970 datasets (p?<?0.05). Next, we validated our findings in an independent cohort of AML samples collected in our hospital. We found that ubiquitin-conjugating enzyme E2E1 (UBE2E1) expression was adversely correlated with AML survival (p?=?0.04). Multivariable analysis showed that UBE2E1 high patients had a significant shorter OS and shorter progression-free survival after adjusting other known prognostic factors (p?=?0.03). At last, we found that UBE2E1 expression was negatively correlated with patients’ response to induction chemotherapy (p?<?0.05).

Conclusions

In summary, we demonstrated that UBE2E1 expression was a novel prognostic factor in adult, non-APL AML patients.
  相似文献   

15.
Acute myeloid leukemia patients with normal cytogenetics (CN-AML) account for almost half of AML cases. We aimed to study the frequency and relationship of a wide range of genes previously reported as mutated in AML (ASXL1, NPM1, FLT3, TET2, IDH1/2, RUNX1, DNMT3A, NRAS, JAK2, WT1, CBL, SF3B1, TP53, KRAS and MPL) in a series of 84 CN-AML cases. The most frequently mutated genes in primary cases were NPM1 (60.8%) and FLT3 (50.0%), and in secondary cases ASXL1 (48.5%) and TET2 (30.3%). We showed that 85% of CN-AML patients have mutations in at least one of ASXL1, NPM1, FLT3, TET2, IDH1/2 and/or RUNX1. Serial samples from 19 MDS/CMML cases that progressed to AML were analyzed for ASXL1/TET2/IDH1/2 mutations; seventeen cases presented mutations of at least one of these genes. However, there was no consistent pattern in mutation acquisition during disease progression. This report concerns the analysis of the largest number of gene mutations in CN-AML studied to date, and provides insight into the mutational profile of CN-AML.  相似文献   

16.

Background

p300 (KAT3B) lysine acetyltransferase activity is modulated under different physiological and pathological contexts through the induction of trans-autoacetylation. This phenomenon is mediated by several factors, mechanisms of which are not fully understood.

Methods

Through acetyltransferase assays using full-length, baculovirus-expressed KATs, the specificity of NPM1-mediated enhancement of p300 autoacetylation was tested. Chaperone assays and tryptophan fluorescence studies were performed to evaluate the NPM1-induced protein folding. The NPM1 oligomer-defective mutant characterization was done by glutaraldehyde-crosslinking. The small-molecule inhibitor of NPM1 oligomerization was used to confirm the absolute requirement of multimeric NPM1 in vivo. Immunohistochemistry analysis of oral cancer patient samples was done to uncover the pathophysiological significance of NPM1-induced p300 autoacetylation.

Results

We find that the histone chaperone NPM1 is a specific inducer of p300 autoacetylation. Distinct from its histone chaperone activity, NPM1 is a molecular chaperone of p300. The biophysical experiments suggest that there is a reversible binding between NPM1 and p300 which can modulate p300 acetyltransferase activity. Disruption of NPM1 oligomerization suggests that oligomeric NPM1 is essential for the induction of p300 autoacetylation. Significantly, we observe a concomitant hyper-autoacetylation of p300 with overexpression of NPM1 in oral cancer samples.

Conclusion

NPM1 can specifically modulate p300 acetyltransferase activity through the enhancement of autoacetylation. The molecular chaperone activity and oligomerization of NPM1 play a pivotal role in this phenomenon.

General significance

NPM1 is overexpressed in several solid cancers, the significance of which is unknown. Induction of p300 autoacetylation could be the cause of NPM1-mediated tumorigenicity.  相似文献   

17.

BACKGROUND:

Leprosy (Hansen''s disease) is a human chronic granulomatous infectious disease caused by Mycobacterium leprae. Several types of study support a role for host genetics in susceptibility to leprosy. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes an intracellular lymphoid protein tyrosine phosphatase that has been shown to play a negative regulatory role in T-cell activation.

AIMS:

The aim of the present study was to find out associating the PTPN22 C1858T (R620W) polymorphism and leprosy in the Azeri population from Northwest Iran.

MATERIALS AND METHODS:

A total of 153 treated leprosy patients and 197 healthy and ethnic matched controls entered this study. We used restriction fragment length polymorphism method to type PTPN22 C1858T polymorphism.

RESULTS:

There was no significant difference in distribution of genotype and allele frequencies of PTPN22 C1858T polymorphism between leprosy patients and controls (P = 0.641 and 0.645; respectively). Moreover, there was no significant association between different clinical findings (karnofsky performance status score, clinical forms and manifestations of leprosy) and PTPN22 C1858T polymorphism. Data showed a low frequency of the minor (T) allele by 2.3% in leprosy and 1.5% in healthy individuals.

CONCLUSIONS:

The PTPN22 C1858T (R620W) is not relevant in susceptibility to leprosy in the Azeri population of Northwest Iran.  相似文献   

18.
FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML as a basis for the development of highly predictive tests for guidance of post-remission therapy.  相似文献   

19.

Background:

The human AML1 gene, located on chromosome 21, can be fused to the AML1- eight-twenty-one (ETO) oncoprotein on chromosome eight, resulting in a t(8;21)(q22;q22) translocation. Acute myeloid leukemia (AML) associated with this translocation is considered a distinct AML with a favorable prognosis. Due to the various incidences of the translocation, which is associated with geographic diversities, investigation of molecular epidemiology is important to increase the awareness of physicians and hematologists regarding the frequency this chromosomal aberration.

Methods:

The patients were classified according to the French–American–British classification into eight groups: M0–M7. Determination of the prevalence of the AML1-ETO fusion gene was accomplished by TaqMan real-time PCR. Bone marrow samples from 113 patients with newly-diagnosed, untreated AML -M1, -M2, and -M4, and 20 healthy controls admitted to the Ghaem Hospital in Mashhad, Iran were studied.

Results:

The AML1-ETO fusion gene was detected up 50% of the M2 subgroup and absent in the M1 and M4 subtypes and healthy controls. Comparison of the prevalence of the t(8;21) translocation with results of previous studies showed that it varies between countries. This result may be due to geographic or ethnic differences, or both.

Conclusions:

The relatively high prevalence of the t(8;21) translocation in Iran was similar to that found in other Asian countries. It was closely associated with female gender, relatively young age, and FAB-M2 subtype. Its distribution varied considerably with geographic area. Therefore, further studies are needed to provide epidemiological data important for the establishment of optimal therapeutic strategies applicable to patients of each region. Key Words: Acute myeloid leukemia, AML1-ETO, M2, Prevalence, t(8;21)  相似文献   

20.

Background

Nucleophosmin (NPM1, B23) is a multifunctional protein that is involved in a variety of fundamental biological processes. NPM1/B23 deregulation is implicated in the pathogenesis of several human malignancies. This protein exerts its functions through the interaction with a multiplicity of biological partners. Very recently it is has been shown that NPM1/B23 specifically recognizes DNA G-quadruplexes through its C-terminal region.

Methods

Through a rational dissection approach of protein here we show that the intrinsically unfolded regions of NPM1/B23 significantly contribute to the binding of c-MYC G-quadruplex motif. Interestingly, the analysis of the ability of distinct NPM1/B23 fragments to bind this quadruplex led to the identifications of distinct NPM1/B23-based peptides that individually present a high affinity for this motif.

Results

These results suggest that the tight binding of NPM1/B23 to the G-quadruplex is achieved through the cooperation of both folded and unfolded regions that are individually able to bind it. The dissection of NPM1/B23 also unveils that its H1 helix is intrinsically endowed with an unusual thermal stability.

Conclusions

These findings have implications for the unfolding mechanism of NPM1/B23, for the G-quadruplex affinity of the different NPM1/B23 isoforms and for the design of peptide-based molecules able to interact with this DNA motif.

General observation

This study sheds new light in the molecular mechanism of the complex NPM1/G-quadruplex involved in acute myeloid leukemia (AML) disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号