首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioblastoma Multiforme (GBM) is an incurable malignancy. GBM patients have a short life expectancy despite aggressive therapeutic approaches based on surgical resection followed by adjuvant radiotherapy and concomitant chemotherapy. Glioblastoma growth is characterized by a high motility of tumour cells, their resistance to both chemo/radio‐therapy, apoptosis inhibition leading to failure of conventional therapy. Cancer Stem Cells (CSCs), identified in GBM as well as in many other cancer types, express the membrane antigen prominin‐1 (namely CD133). These cells and normal Neural Stem Cells (NSC) share surface markers and properties, i.e. are able to self‐renew and differentiate into multiple cell types. Stem cell self‐renewal depends on microenvironmental cues, including Extracellular Matrix (ECM) composition and cell types. Therefore, the role of microenvironment needs to be evaluated to clarify its importance in tumour initiation and progression through CSCs. The specific microenvironment of CSCs was found to mimic in part the vascular niche of normal stem cells. The targeting of GMB CSCs may represent a powerful treatment approach. Lastly, in GBM patients cancer‐initiating cells contribute to the profound immune suppression that in turn correlated with CSCs STAT3 (CD133 + ). Further studies of microenvironment are needed to better understand the origin of GMB/GBM CSCs and its immunosuppressive properties. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
《Cytotherapy》2014,16(7):1011-1023
Background aimsGlioblastoma multiforme (GBM) is the most common and lethal primary brain tumor and current treatments have not improved its prognosis. Therefore, new strategies and therapeutic agents should be investigated. Growth arrest specific-1 (Gas1) is a protein that induces cell arrest and apoptosis of gliomas and a soluble form, tGas1, increases these effects acting in both autocrine and paracrine manners. Moreover, neural stem cells (NSCs) can be used as a vehicle to transport therapeutic molecules because they have innate tropism towards tumors.MethodsLentiviral vectors were used to obtain NSCs capable of expressing tGas1 in a regulated manner. The ability of engineered NSCs to track and reach GBM in vivo, produce tGas1, and their efficacy decreasing tumor growth and increasing the overall health and survival time of nude mice implanted with GBM were assessed.ResultsThe overexpression of tGas1 from NSCs decreased viability and induced cell arrest and apoptosis of GBM cells and also, albeit in a reduced manner, of NSCs themselves. NSCs migrate from one cerebral hemisphere to the contralateral, reach GBM, express the tGas1 transgene when induced by tetracycline and produce the protein. Tumor volume decreased by 77% compared with controls, and tGas1 improved the overall health and increased the survival time of mice implanted with GBM by 75%.ConclusionsWe demonstrated that tGas1 has an antineoplastic effect, and the results support the potential of tGas1 as an adjuvant for the treatment of gliomas.  相似文献   

3.
《Cell reports》2020,30(10):3383-3396.e7
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy.  相似文献   

6.
  1. Download : Download high-res image (95KB)
  2. Download : Download full-size image
Highlights
  • •The plasma-soluble HLA peptidome of Glioblastoma contains many tumor antigens.
  • •This sHLA peptidome may serve as a rich source for disease biomarkers.
  • •The sHLA peptidomes are highly correlated with the tumor's membranal HLA peptidomes.
  • •The HLA peptidomes differ significantly from the proteomes of the tumors.
  相似文献   

7.
  1. Download : Download high-res image (120KB)
  2. Download : Download full-size image
Highlights
  • •Rigorous experimental design and data analysis for large-scale SRM studies.
  • •Plasma-based biomarker signature combined with CA125 for ovarian cancer detection.
  • •Broadly applicable strategy for the development of diagnostic biomarker assays.
  相似文献   

8.
9.
10.
11.
12.
Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enable de novo studies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatworm Schmidtea mediterranea at different time points during cephalic ganglia regeneration. A protocol was developed to make S. mediterranea tissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians.  相似文献   

13.
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
Highlights
  • •HPV is being introduced as the primary test in cervical cancer screening programs.
  • •New biomarkers are needed for co-testing of women HPV positive in screening.
  • •Analysis of plasma from women with invasive cervical cancer identified a 11-marker panel.
  • •This signature shows high sensitivity and specificity to identify women with cancer.
  相似文献   

14.
Cancer treatment related infertility (CTRI) affects more than one third of young women undergoing anti-cancer protocols, inducing a premature exhaustion of the ovarian reserve. In addition to ovarian suppression by GnRHa, oocyte and cortex cryopreservation has gained interest in patients with estrogen-sensitive tumors for whom the hormonal burst to prompt the multiple follicular growth could provide a further pro-life tumor pulsing. On the other hand, cortex reimplantation implies a few drawbacks due to the unknown consistency of the follicles to be reimplanted or the risk of reintroducing malignant cells. The capability of ovarian stem cells (OCSs) from fresh ovarian cortex fragments to differentiate in vitro to mature oocytes provides a tool to overcome these drawbacks. In fact, since ovarian cortex sampling and cryopreservation is practicable before gonadotoxic treatments, the recruitment of OSCs from defrosted fragments could provide a novel opportunity to verify their suitability to be expanded in vitro as oocyte like cells (OLCs). Here, we describe in very preliminary experiments the consistency of an OSC population from a single cryopreserved ovarian cortex after thawing as well as both their viability and their suitability to be further explored in their property to differentiate in OLCs, thus reinforcing interest in stemness studies in the treatment of female CTRI.  相似文献   

15.
骨髓间充质干细胞和部分肿瘤细胞中Nucleostemin基因的表达   总被引:19,自引:0,他引:19  
以分离的人胚胎和大鼠骨髓间充质干细胞 (MSCs) ,6种肿瘤细胞株 ,裸鼠肿瘤和转移瘤组织为实验材料 ,以大鼠心肌组织和人胎盘组织为对照 ,探讨nucleostemin基因的表达情况 .RT PCR结果显示 ,nucleostemin基因在MSCs、肿瘤细胞和肿瘤组织中均有不同程度的表达 ,而大鼠心肌和人胎盘组织中无表达 .DNA测序结果证明 ,扩增的PCR产物与GenBank提供的DNA序列完全同源 .SCID裸鼠肿瘤动物模型定量PCR结果证实 ,nucleostemin的mRNA在裸鼠肿瘤组织和转移瘤组织中表达较高 .研究结果表明 ,在细胞中nucleostemin基因不同水平的表达可能与MSCs、肿瘤细胞的增殖和肿瘤的发生、发展与转移有关 .  相似文献   

16.
采用电喷雾质谱法(ESI-MS),对从莲子心分离得到的碳苷类黄酮化合物进行质谱碎裂规律研究。结果表明,负离子模式下,六碳糖碳苷黄酮主要发生糖环裂解,通过丢失特征性的碎片(90 u、120 u、150 u)与氧苷黄酮区分;单糖取代的六碳醛糖氧苷黄酮直接丢失单糖部分(162 u),六碳醛糖种类无法通过质谱区分,但由于它们在液相上的保留时间不同,可通过液相色谱-质谱(LC-MS)联用方法分离鉴定;二糖取代的氧苷黄酮主要碎片离子通过丢失糖部分(146 u、162 u、308 u)所得,二糖的种类及连接方式可通过质谱图上的碎片离子峰及其相对丰度辨别。莲子心中多种碳苷黄酮和氧苷黄酮质谱的不同裂解规律,不仅有助于莲子心黄酮化合物的快速鉴定,而且可以通过与液相色谱联用实现莲子心中同分异构体的快速区分。  相似文献   

17.
Neural stem cells (NSCs) are currently considered powerful candidates for cell therapy in neurodegenerative disorders such as Parkinson's disease. However, it is not known when and how NSCs begin to differentiate functionally. Recent reports suggest that classical neurotransmitters such as acetylcholine (Ach) are involved in the proliferation and differentiation of neural progenitor cells, suggesting that neurotransmitters play an important regulatory role in development of the central nervous system (CNS). We have shown by calcium imaging and immunochemistry that proliferation and differentiation are enhanced by M2 muscarinic Ach receptors (mAchR) expressed on the NSC surface and on their neural progeny. Moreover, atropine, an mAchR antagonist, blocks the enhancement and inhibits the subsequent differentiation of NSCs. Further understanding of this neural-nutrition role of Ach might elucidate fetal brain development, the brain's response to injury, and learning and memory.  相似文献   

18.
The glycosylation of human chorionic gonadotropin (hCG) plays an important role in reproductive tumors. Detecting hCG N-glycosylation alteration may significantly improve the diagnostic accuracy and sensitivity of related cancers. However, developing an immunoassay directly against the N-linked oligosaccharides is unlikely because of the heterogeneity and low immunogenicity of carbohydrates. Here, we report a hydrogen/deuterium exchange and MS approach to investigate the effect of N-glycosylation on the binding of antibodies against different hCG glycoforms. Hyperglycosylated hCG was purified from the urine of invasive mole patients, and the structure of its N-linked oligosaccharides was confirmed to be more branched by MS. The binding kinetics of the anti-hCG antibodies MCA329 and MCA1024 against hCG and hyperglycosylated hCG were compared using biolayer interferometry. The binding affinity of MCA1024 changed significantly in response to the alteration of hCG N-linked oligosaccharides. Hydrogen/deuterium exchange-MS reveals that the peptide β65–83 of the hCG β subunit is the epitope for MCA1024. Site-specific N-glycosylation analysis suggests that N-linked oligosaccharides at Asn-13 and Asn-30 on the β subunit affect the binding affinity of MCA1024. These results prove that some antibodies are sensitive to the structural change of N-linked oligosaccharides, whereas others are not affected by N-glycosylation. It is promising to improve glycoprotein biomarker-based cancer diagnostics by developing combined immunoassays that can determine the level of protein and measure the degree of N-glycosylation simultaneously.  相似文献   

19.
Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer''s disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.  相似文献   

20.
《Cell reports》2020,30(8):2791-2806.e5
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号