首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
Extracts of mandibular glands taken from adult queens of the honey bee, Apis mellifera carnica, were analysed by gas chromatography-mass spectroscopy. More than 100 compounds could be identified among which oxygenated fatty acids with six, eight, 10 and 12 carbon atoms are particularly interesting since they show structural relationships to the queen substance, (E)-9-oxo-2-decenoic acid. Changes in the patterns of volatiles were followed up from emergence until the full dominant status of an egg-laying queen in a strong colony. Generally, the amount of volatiles per gland was found to increase with age. The final level of queen substance (9-ODA) content is reached at the postmating stage about 10 days after emergence. Ontogenetic patterns of concentrations were determined for those components regarded to predominantly contribute to the royal pheromone. Characteristic compositions of signals, possibly involved in the premating, mating and postmating dominance status of a honey bee queen are discussed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

2.
We investigated worker regulation of queen activity during reproductive swarming by examining the rates at which workers performed vibration signals and piping on queens during the different stages of the swarming process. Worker–queen interactions were first examined inside observation hives during the 2–3 wk that preceded the issue of the swarm (pre‐swarming period) and then inside the swarm clusters during the period that preceded liftoff and relocation to a new nest site (post‐swarming period). Queen court size did not differ between the pre‐ and post‐swarming periods, but workers fed the queens less inside the swarm clusters. Workers performed vibration signals on the queens at increasing rates throughout the pre‐swarming period inside the natal nest, but rarely or never vibrated the queen inside the swarm. Piping was performed on the queens during both the pre‐ and post‐swarming periods and always reached a peak immediately before queen flight. During the final 2–4 h before swarm liftoff, queens were increasingly contacted by waggle dancers for nest sites, some of which piped the queen. The vibration signal may operate in a modulatory manner to gradually prepare the queen for flight from the natal nest, and the cumulative effects of the signal during the pre‐swarming period may make further vibrations on the queen unnecessary when inside the swarm cluster. In contrast, worker piping may function in a more immediate manner to trigger queen takeoff during both the pre‐ and post‐swarming periods. Workers that vibrate and pipe the queen tend to be older, foraging‐age bees. The regulation of queen activity during colony reproduction may therefore be controlled largely by workers that normally have little contact with queens, but help to formulate colony reproductive and movement decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号