共查询到20条相似文献,搜索用时 0 毫秒
1.
Constanza Garcia-Keller Madeline Hohmeister Kailyn Seidling Lauren Beloate Vivian Chioma Sade Spencer Peter Kalivas Daniela Neuhofer 《Addiction biology》2023,28(8):e13286
Drugs of abuse induce cell type-specific adaptations in D1- and D2-medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) that can bias signalling towards D1-MSNs and enhance relapse vulnerability. Whether Δ9-tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC + cannabidiol (THC + CBD). After extinction training spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC + CBD induced a loss of large spine heads in D1- but not D2-MSNs and commensurate reductions in glutamate synaptic transmission. Also, presynaptic CB1R function was impaired selectively at glutamatergic synapses on D1-MSNs, which augmented the capacity to potentiate glutamate transmission. Using cFOS expression as an activity marker, we found no change after extinction but increased cFOS expression in D1-MSNs after cue-induced drug seeking. Contrasting D1-MSNs, CB1R function and glutamate synaptic transmission on D2-MSN synapses were unaffected by THC + CBD use. However, cFOS expression was decreased in D2-MSNs of THC + CBD-extinguished rats and was restored after drug seeking. Thus, CB1R adaptations in D1-MSNs partially predicted neuronal activity changes, posing pathway specific modulation of eCB signalling in D1-MSNs as a potential treatment avenue for cannabis use disorder (CUD). 相似文献
3.
Jacob T. Beckley Patrick K. Randall Rachel J. Smith Benjamin A. Hughes Peter W. Kalivas John J. Woodward 《Addiction biology》2016,21(3):530-546
Abused inhalants are voluntarily inhaled at high concentrations to produce intoxicating effects. Results from animal studies show that the abused inhalant toluene triggers behaviors, such as self‐administration and conditioned place preference, which are commonly associated with addictive drugs. However, little is known about how toluene affects neurons within the nucleus accumbens (NAc), a brain region within the basal ganglia that mediates goal‐directed behaviors and is implicated in the development and maintenance of addictive behaviors. Here we report that toluene inhibits a component of the after‐hyperpolarization potential, and dose‐dependently inhibits N‐methyl‐D‐aspartate (NMDA)‐mediated currents in rat NAc medium spiny neurons (MSN). Moreover, using the multivariate statistical technique, partial least squares discriminative analysis to analyze electrophysiological measures from rat NAc MSNs, we show that toluene induces a persistent depression of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐mediated currents in one subtype of NAc MSNs, and that the electrophysiological features of MSN neurons predicts their sensitivity to toluene. The CB1 receptor antagonist AM281 blocked the toluene‐induced long‐term depression of AMPA currents, indicating that this process is dependent on endocannabinoid signaling. The neuronal identity of recorded cells was examined using dual histochemistry and shows that toluene‐sensitive NAc neurons are dopamine D2 MSNs that express preproenkephalin mRNA. Overall, the results from these studies indicate that physiological characteristics obtained from NAc MSNs during whole‐cell patch‐clamp recordings reliably predict neuronal phenotype, and that the abused inhalant toluene differentially depresses excitatory neurotransmission in NAc neuronal subtypes. 相似文献
5.
《Prostaglandins, leukotrienes, and essential fatty acids》2014,90(6):199-206
The aim of this study was to examine changes in the lipid profile of red blood cells and muscle tissue along with the expression of anabolic signalling proteins in human skeletal muscle. Following a 2-week control period, 10 healthy male participants consumed 5 g d−1 of fish oil (FO) for 4 weeks. Muscle biopsies and venous blood samples were collected in the fasted state 2 weeks prior (W-2) and immediately before (W0) the initiation of FO supplementation for internal control. Muscle biopsies and venous blood samples were again obtained at week 1 (W1), 2 (W2) and 4 (W4) during FO supplementation for assessment of changes in lipid composition and expression of anabolic signalling proteins. There was no change in the composition of any lipid class between W-2 and W0 confirming control. Following FO supplementation n-3 polyunsaturated fatty acid (n-3 PUFA) muscle lipid composition was increased from W0 to W2 and continued to rise at W4. n-3 PUFA blood lipid composition was increased from W0 to W1 and remained elevated for the remaining time points. Total protein content of focal adhesion kinase (FAK) increased from W0 to W4 whereas total mechanistic target of rapamycin (mTOR) was increased from W0 at W1 with no further significant increases at W2 and W4. These data show that FO supplementation results in discordant changes in the n-3 PUFA composition of skeletal muscle compared to blood that is associated with increases in total FAK content. 相似文献
6.
7.
Acupuncture and moxibustion are traditional medical treatments that have come to play important roles in complementary and
alternative medicines. Moxibustion also has a long history as a folk remedy in Japan, particularly due to the technical simplicity
and selective efficacy on certain types of disease and distress. This study examined the effects of moxibustion focusing on
the brain reward system, particularly in the nucleus accumbens. The effects of moxibustion stimulation at various sites and
frequencies on monoamine levels of adult male Sprague-Dawley rats were examined using high-preformance liquid chromatography
of dissected nucleus accumbens tissues. The rats weighing 290–310 g were divided into 3 groups according to the moxibustion
point used: hindlimb, lumbar or parietal points. Each group was further divided into 3 subgroups, with stimulation for 10
consecutive days, for 1 day, or sham treatment (control). On each day of stimulation, 5 moxibustion cones with a peak temperature
of 200°C were applied consecutively. Stimulation of any point on 1 day only did not change dopamine or serotonin levels, but
lumbar stimulation significantly increased the metabolic turnover of dopamine. Conversely, stimulation for 10 consecutive
days resulted in significantly decreased serotonin levels for hindlimb and parietal stimulations, and significantly increased
5-hydroxyindolacetic acid/serotonin ratio for hindlimb stimulation. These results suggest that the metabolic turnover of serotonin
release may be accentuated by moxibustion in a reward-related brain area. Moxibustion over consecutive days, especially that
to peripheral regions, appears most efficient to influence on monoamine levels in the nucleus accumbens.
Special issue dedicated to Dr. Simo S. Oja 相似文献
8.
Effect of operant self-administration of 10% ethanol plus 10% sucrose on dopamine and ethanol concentrations in the nucleus accumbens 总被引:4,自引:0,他引:4
Doyon WM Anders SK Ramachandra VS Czachowski CL Gonzales RA 《Journal of neurochemistry》2005,93(6):1469-1481
Although operant ethanol self-administration can increase accumbal dopamine activity, the relationship between dopamine and ethanol levels during consumption remains unclear. We trained Long-Evans rats to self-administer escalating concentrations of ethanol (with 10% sucrose) over 7 days, during which two to four lever presses resulted in 20 min of access to the solution with no further response requirements. Accumbal microdialysis was performed in rats self-administering 10% ethanol (plus 10% sucrose) or 10% sucrose alone. Most ethanol (1.6 +/- 0.2 g/kg) and sucrose intake occurred during the first 10 min of access. Sucrose ingestion did not induce significant changes in dopamine concentrations. Dopamine levels increased within the first 5 min of ethanol availability followed by a return to baseline, whereas brain ethanol levels reached peak concentration more than 40 min later. We found significant correlations between intake and dopamine concentration during the initial 10 min of consumption. Furthermore, ethanol-conditioned rats consuming 10% sucrose showed no effect of ethanol expectation on dopamine activity. The transient rise in dopamine during ethanol ingestion suggests that the dopamine response was not solely due to the pharmacological properties of ethanol. The dopamine response may be related to the stimulus properties of ethanol presentation, which were strongest during consumption. 相似文献
9.
Lawrence C. Blume Caroline E. Bass Steven R. Childers George D. Dalton David C. S. Roberts Jasmine M. Richardson Ruoyu Xiao Dana E. Selley Allyn C. Howlett 《Journal of neurochemistry》2013,124(6):808-820
Although biochemical and physiological evidence suggests a strong interaction between striatal CB1 cannabinoid (CB1R) and D2 dopamine (D2R) receptors, the mechanisms are poorly understood. We targeted medium spiny neurons of the indirect pathway using shRNA to knockdown either CB1R or D2R. Chronic reduction in either receptor resulted in deficits in gene and protein expression for the alternative receptor and concomitantly increased expression of the cannabinoid receptor interacting protein 1a (CRIP1a), suggesting a novel role for CRIP1a in dopaminergic systems. Both CB1R and D2R knockdown reduced striatal dopaminergic‐stimulated [35S]GTPγS binding, and D2R knockdown reduced pallidal WIN55212‐2‐stimulated [35S]GTPγS binding. Decreased D2R and CB1R activity was associated with decreased striatal phosphoERK. A decrease in mRNA for opioid peptide precursors pDYN and pENK accompanied knockdown of CB1Rs or D2Rs, and over‐expression of CRIP1a. Down‐regulation in opioid peptide mRNAs was followed in time by increased DOR1 but not MOR1 expression, leading to increased [D‐Pen2, D‐Pen5]‐enkephalin‐stimulated [35S]GTPγS binding in the striatum. We conclude that mechanisms intrinsic to striatal medium spiny neurons or extrinsic via the indirect pathway adjust for changes in CB1R or D2R levels by modifying the expression and signaling capabilities of the alternative receptor as well as CRIP1a and the DELTA opioid system. 相似文献
10.
11.
《Animal : an international journal of animal bioscience》2016,10(4):700-708
In Western countries the dietary guidance emphasizes the need to decrease the intake of saturated fatty acids and to replace them with polyunsaturated fatty acids (PUFA), particularly long chain n-3 PUFA (LC-PUFA). The production of poultry meat having a lower fat content and healthier fatty acid (FA) profile is a hot topic for the poultry industry, and the possibility to identify genotypes able to produce meat with a higher LC-PUFA content deserves attention. The aims of the present study were to evidence in chicken (i) a genotype-related different expression of the desaturating enzymes delta-6 (Δ6, EC 1.14.99.25), delta-5 (Δ5, EC 1.14.19.) and delta-9 (Δ9, EC 1.14.19.1); (ii) the impact of the hypothesized different expression on the meat FA composition; (iii) the distribution of desaturase products in the different lipid classes. Slow (SG), medium (MG) and fast (FG) growing chickens fed the same diet were evaluated either for the relative expression of FADS1, FADS2 and SCD1 genes in liver (by q-PCR), or for the FA composition of breast meat. MG and particularly SG birds showed a greater expression of FADS2 and FADS1 genes, a higher Δ6 and Δ5 activity (estimated using desaturase indices), and consequently a higher LC-PUFA content in the breast meat than FG birds. The relationship between genotype and desaturating ability was demonstrated, with a significant impact on the PUFA content of breast meat. Due to the high consumption rate of avian meat, the identification of the best genotypes for meat production could represent an important goal not only for the food industry, but also for the improvement of human nutrition. 相似文献
12.
Florence Sotty Liliana P. Montezinho Björn Steiniger-Brach† Jacob Nielsen‡ 《Journal of neurochemistry》2009,109(3):766-775
Phosphodiesterase (PDE) 10A is highly expressed in medium spiny neurons of the striatum, at the confluence of the corticostriatal glutamatergic and the midbrain dopaminergic pathways, both believed to be involved in the physiopathology of schizophrenia. There is a growing body of evidence suggesting that targeting PDE10A may be beneficial for the treatment of positive symptoms in schizophrenia. The aim of the present study was to investigate how PDE10A inhibition modulates mesolimbic dopaminergic neurotransmission. We found that the selective PDE10A inhibitor, MP-10, blocked d -amphetamine-induced hyperactivity as well as d -amphetamine-induced dopamine efflux in the nucleus accumbens in a dose-dependent manner. We further investigated the mechanism by which PDE10A inhibition affects dopaminergic neurotransmission. We report that MP-10 potentiated the effect of a high but not a low dose of d -amphetamine on the mean firing rate of dopaminergic neurons recorded from the ventral tegmental area. Similarly, the effect of a high, but not a low dose of d -amphetamine, was completely reversed by the selective D1 antagonist, SCH23390. These data suggest that the D1 -regulated feedback control of midbrain dopamine neurons is a critical pathway involved in the modulation of the response of mesolimbic dopamine neurons to d -amphetamine by PDE10A inhibition. 相似文献
13.
V. A. Russell M. C. L. Lamm R. Allin A. S. de Villiers A. Searson J. J. F. Taljaard 《Neurochemical research》1989,14(2):169-172
DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) treatment (50 mg/kg i.p., 10 days previously) significantly decreased the noradrenaline (NA) content of the rostral part of the nucleus accumbens. The medial and caudal areas were not affected. The nucleus accumbens appears to receive noradrenergic innervation predominantly from subcoeruleus nuclei of the pons-medulla while the locus coeruleus neurons project to the rostral area. The isoproterenol-induced enhancement of the K+-evoked release of [3H]dopamine (DA) was not affected by DSP4 treatment. Noradrenergic denervation does not appear to have been sufficient to cause up-regulation of postsynaptic -adrenoceptors. 相似文献
14.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens. 相似文献
15.
Megan L. Jones Peter J. Mark Jeffrey A. Keelan Anne Barden Emilie Mas Trevor A. Mori Brendan J. Waddell 《Journal of lipid research》2013,54(8):2247-2254
Placental inflammation is associated with several pregnancy disorders. Inflammation is limited by anti-inflammatory and proresolving mechanisms, the latter partly mediated by resolvins and protectins derived from omega-3 polyunsaturated fatty acids (n-3PUFA). We examined effects of dietary n-3PUFAs on levels of resolvins, protectins, and lipoxygenase (ALOX) enzymes in the rat placenta. Rats consumed standard (Std) or high n-3PUFA (Hn3) diets from day 1 of pregnancy; tissues were collected on day 17 or 22 (term = day 23). Maternal Hn3 diet increased resolvin and protectin precursors, 18R/S-HEPE (P < 0.001), and 17R/S-HDHA (P < 0.01) at both days. Resolvins (17R-RvD1 and RvD1) increased at day 22 (P < 0.001) after Hn3 consumption, coincident with higher Alox15b and Alox5 mRNA expression, while RvD2 increased at both days (P < 0.05). Protectins, PD1, and 10S,17S-DiHDHA increased over late gestation (P < 0.001), coincident with higher Alox15 mRNA expression (P < 0.001) and further increased with Hn3 diet (P < 0.05). Maternal systemic and placental proinflammatory mediators were not suppressed by Hn3 diet; systemic IL1β, placental Il1β, and Il6 mRNA expression increased marginally with Hn3 at day 22 (P < 0.001), while Ptgs1 (Cox1) expression increased both days (P < 0.05). Our data indicate that maternal n-3PUFA supplementation enhances expression of enzymes in the n-3PUFA metabolic pathway and increases placental levels of resolvins and protectins. 相似文献
16.
H. Blanchard F. Pédrono N. Boulier-Monthéan D. Catheline V. Rioux P. Legrand 《Prostaglandins, leukotrienes, and essential fatty acids》2013,88(5):383-389
The intake of the essential fatty acid precursor α-linolenic acid (ALA) contributes to ensure adequate n-3 long-chain polyunsaturated fatty acid (LC-PUFA) bioavailability. Conversely, linoleic acid (LA) intake may compromise tissue n-3 PUFA status as its conversion to n-6 LC-PUFA shares a common enzymatic pathway with the n-3 family. This study aimed to measure dietary ALA and LA contribution to LC-PUFA biosynthesis and tissue composition. Rats were fed with control or experimental diets moderately enriched in ALA or LA for 8 weeks. Liver Δ6- and Δ5-desaturases were analyzed and FA composition was determined in tissues (red blood cells, liver, brain and heart). Hepatic Δ6-desaturase activity was activated with both diets, and Δ5-desaturase activity only with the ALA diet. The ALA diet led to higher n-3 LC-PUFA composition, including DHA in brain and heart. The LA diet reduced n-3 content in blood, liver and heart, without impacting n-6 LC-PUFA composition. At levels relevant with human nutrition, increasing dietary ALA and reducing LA intake were both beneficial in increasing n-3 LC-PUFA bioavailability in tissues. 相似文献
17.
《Addiction biology》2017,22(5):1218-1231
Functional connections between the basolateral amygdala (BLA) and nucleus accumbens (NAc) are involved critically in opiate‐reward processing. In the BLA, inhibitory GABAergic substrates are inhibited by cannabinoid CB1 receptor (CB1R) activation and can modulate BLA projections to various limbic regions, including the NAc. However, the potential role of CB1R transmission in the regulation of opiate‐related memory formation via the BLA → NAc circuit is not understood. Using an unbiased conditioned place preference paradigm in rats, we examined the effects of intra‐BLA CB1R modulation by either direct pharmacological activation or blockade of CB1R transmission. We report that intra‐BLA CB1R activation switches normally rewarding effects of morphine into strongly aversive effects. In contrast, CB1R blockade strongly potentiates normally subreward threshold effects of morphine. Next, using targeted microinfusions of an NMDA receptor antagonist to either the core or shell (NASh) subdivisions of the NAc, we found that selective blockade of NMDA transmission in the NA shell, but not core, prevented both intra‐BLA CB1 blockade‐mediated opiate reward potentiation and CB1 activation‐mediated aversion effects. Finally, using multi‐unit, in vivo electrophysiological recordings in the NASh, we report that the ability of intra‐BLA CB1R modulation to control opiate reward salience and motivational valence is associated with distinct reward or aversion neuronal activity patterns and bi‐directional regulation of intra‐NASh fast‐spiking interneurons versus medium spiny neurons. These findings identify a unique mechanism whereby bi‐directional BLA CB1R transmission can regulate opiate‐related motivational processing and control affective states through functional modulation of mesolimbic neuronal activity. 相似文献
19.
Scheggi S Leggio B Masi F Grappi S Gambarana C Nanni G Rauggi R De Montis MG 《Journal of neurochemistry》2002,83(4):895-903
Stressful events are accompanied by modifications in dopaminergic transmission in distinct brain regions. As the activity of the neuronal dopamine (DA) transporter (DAT) is considered to be a critical mechanism for determining the extent of DA receptor activation, we investigated whether a 3-week exposure to unavoidable stress, which produces a reduction in DA output in the nucleus accumbens shell (NAcS) and medial prefrontal cortex (mPFC), would affect DAT density and DA D1 receptor complex activity in the NAcS, mPFC and caudate-putamen (CPu). Rats exposed to unavoidable stress showed a decreased DA output in the NAcS accompanied by a decrease in the number of DAT binding sites, and an increase in the number of DA D1 binding sites and Vmax of SKF 38393-stimulated adenylyl cyclase. In the mPFC, stress exposure produced a decrease in DA output with no modification in DAT binding or in DA D1 receptor complex activity. Moreover, in the CPu stress exposure induced no changes in DA output or in the other neurochemical variables examined. This study shows that exposure to a chronic unavoidable stress that produces a decrease in DA output in frontomesolimbic areas induced several adaptive neurochemical modifications selectively in the nucleus accumbens. 相似文献
20.
The nucleus accumbens, situated at the junction between rostral pre-commissural caudate and putamen, is now considered to be critically involved in rewarding and motivational functions mediated by the neurotransmitter dopamine. However, in the human, the precise anatomical boundaries of this nucleus are still undetermined and controversy exists as to the extent to which nucleus accumbens activity is controlled by noradrenaline, a related neurotransmitter now much neglected (in favor of dopamine) by the scientific community. Here we resolve the question of noradrenaline in the human nucleus accumbens and identify, in autopsied brain of normal subjects, a small subdivision of the caudomedial portion of this nucleus that selectively contains strikingly high levels of noradrenaline and thus represents the only area in human brain having equally high levels of both noradrenaline and dopamine. The presence of very high, localized noradrenaline concentrations in the caudomedial nucleus accumbens implies a special biological role for this neurotransmitter in human brain motivational processes. 相似文献