首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The occurrence of a new bacterial dehalogenase acting on both the optical isomers of 2-halogenated alkanoic acids was demonstrated. When the haloalkanoic acid-utilizing bacteria were screened in a medium containing dl-2-chloropropionate as a sole carbon source, two types of bacteria were isolated: (1) a few strains utilizing both d- and l-isomers of 2-chloropropionate and (2) strains utilizing only the l-isomer. A dehalogenating enzyme was obtained from the cells of Pseudomonas sp. which is able to utilize both isomers. The crude enzyme catalyzed the dehalogenation of d- and l-2-chloropropionates to yield l- and d-isomers of lactate, respectively. The enzyme showed the same pH optimum and heat inactivation rate for the d- and l-isomers. Apparent K m values for d- and l-2-chloropropionates were 4.5 and 1.0 mM, respectively. The enzyme acted specifically on 2-haloalkanoic acids. Activity staining of disc-gels electrophoresed witg the crude enzyme preparation showed that the dehalogenation of d- and l-2-chloropropionates, monochloroacetate, dichloroacetate, 2,2-dichloropropionate, and dl-2-chlorobutyrate is due to a single protein.Abbreviations MCA monochloroacetic acid - DCA dichloroacetic acid - TCA trichloroacetic acid - 2 MCPA 2-monochloropropionic acid - 22 DCPA 2,2-dichloropropionic acid - 3 MCPA 3-monochloropropionic acid - 2 MCBA 2-monochlorobutyric acid - 3 MCBA 3-monochlorobutyric acid - 4 MCBA 4-monochlorobutyric acid  相似文献   

2.
Fine structure and formation of eggshells in marine Gastrotricha   总被引:1,自引:2,他引:1  
Summary The fine structure of the gastrotrich eggshell in the hermaphroditic species Turbanella ocellata (Hummon 1974) and the parthenogenetic species Aspidiophorus sp. is described using transmission electron microscopy. The presented evidence strongly suggests that the shell is produced by the egg itself prior to oviposition in both species. The layed egg in Aspidiophorus sp. is provided with a special attachment stalk that is also preformed in the mother animal. Freshly layed eggs of T. ocellata are adhesive all around their surface and lack any specialized structures for attachment. Formation of the spiny eggshell of Aspidiophorus sp. appears to begin with a sudden release of special vesicles containing the preformed spines of the outer eggshell covering. Additional material appears to be secreted by the egg in a more gradual process after the initial vesicle release. The formation of the two fibrous layers in the eggshell of T. ocellata is less well understood and deposition of eggshell material could be seen either as a continuous process or as two separate steps, similar to the events observed for Aspidiophorus sp. For T. ocellata, Tetranchyroderma sp. and Aspidiophorus sp. it is demonstrated that formation of the cuticle occurs as an independent process from that of eggshell formation. This is significantly different from the basic mode of cuticle formation in the annelid line of evolution. The paper argues further that the data support earlier claims of a pronounced difference between the Gastrotricha-Macrodasyida and the Gastrotricha-Paucitubulatina and agree well with the postulated ties of the Gastrotricha and Nematoda. The phylogenetic importance of the eggshell fine-structure is discussed in the framework of present theories on aschelminth phylogeny.Abbreviations cus cuticular spines - cut cuticle - cov coated vesicles - cv cup-shaped vesicles - dp dense particles - ep epidermis - emb embryo - erl lacunae of smooth ER - fgb fibrous and granular bodies - fl fibrous layer - ga Golgi apparatus - gc gut cell - gv Golgi vesicles - im intercellular matrix - isp intercellular space - isl inner shell layer - ld lipid droplet - mdb medium-dense bodies - mvb multivesicular bodies - oc oocyte - od oviduct - osl outer shell layer - o egg - sv spiny vesicles - sh eggshell - st egg-stalk - sl spiny layer - sub substrate - trm trilaminate membrane - yb yolk bodies - yg yolk granule - yoc young oocyte This work was supported by NSF Grant # GB-42211 to R.M. Rieger  相似文献   

3.
Summary The organization of marine gastrotrichs (Macrodasyoidea) is reviewed by ultrastructural analysis of one representative,Turbanella cornuta Remane, and the fine structure of tissues and cells is described. Turbanella cornuta has a mono-layeredcellular epidermis rich withsensory hairs, epidermal bodies, isolatedepidermal glands, glandular adhesive organs belonging to a duo-gland type, andventral ciliated epidermal cells of the multiciliated type. The voluminous neuropil of thebrain consists of a circular commissure which sends out four anterior and posterior longitudinal headnerves. The posterior ones unite on each side to one single longitudinal nerve of the periphery which is occupied with single peripheral neurons and has thin commissures that make it anorthogon. The position and the structure of the neurons indicate their sensitive, associative, motoric, and neurosecretory functions. The different forms of synapses give first hints to neuronal connections within gastrotrichs. There is a big cellularglia around the brain commissure and a small cellular glia within the brain neurons. In between the cross-striated muscle fibrils of thepharyngeal wall there are also nerves and sensory hairs.TheY-organ lies in the interior of the lateral body cavities, which are delimited by an outer musculature of the body wall and an inner musculature of the intestinal tract. In the pharyngeal region, theY-organ fills the body cavities completely and, in the intestinal region, it covers thegonads, which also lie in the lateral body cavities, dorsally. The testicles lie separately in front of the paired ovaries. Single states of oogenesis could be identified as oogonia, and young and old oocytes. There is a paired gland organ in front of the dorsomedian ovary which may produce a mucous cover for the egg.Theintestinal tract is adapted to mechanical stress by a myoepithelium in the pharyngeal region, by various interdigitations, and by narrow intercellular gaps with hemidesmosomal adhesions to the basement membrane. The majority of the resorbing intestinal cells have a high seam of microvilli and contain various numbers of lysosomes. In addition, there are some secerning cells without microvilli, but with a centrically arranged ER and with big secretion granules in the dorsomedian sector.The ultrastructure affirms a close correlation between the conditions of life in the interstitium and structural adaptations, such as may be observed in single structures of the body wall, the y-organ, the intestinal tract and, in some respect, even in the nervous system and in the formerly researched musculature and spermatohistogenesis. On the other hand, for the construction of the glandular adhesive organs, the nervous system, and the formerly investigated body cavities, a phylogenetical relevance is discussed. Thereafter, gastrotrichs have more primitive characters than the closely related nematodes.Abbreviations a sensory hair cells - am ampoule - at outleading tube - b basement membrane - bb basal body - c cilium - cr rootlet of the cilium - cu cuticle - cw cell wall - d d-cells of the brain - de desmosomes - e e-cells of the brain - eb epidermal bodies - ee ripe egg in the dorsomedian ovary - ep epidermis - er endoplasmatic reticulum - ev ventral ciliated epidermal cells - f f-cells of the brain - fr fibrillar structure - g gland cell - ge germ epithelium - gl(1+2) small and big cellular glia of the br - go Golgi-apparatus - gp genital pore - h h-cells of the brain - hf lateral adhesive tubules - hfp posterior adhesive tubules - i intestine - il intestinal lumen - 1 lumen of the organ - li lipid granules - ly lysosomes - m mitochondrium - mb multivesicular body - mc circular musculature - mi microvilli - ml longitudinal musculature - mo mouth opening - mt microtubules - mpl longitudinal muscle fibers of the pharyngeal wall - mpr radial muscle fibers of the pharyngeal wall - n nucleus - nb brain neurons - nc brain commissure - nf nerve fibers - nl lateral headnerve - nm nuclear membrane - nn nucleolus - nv ventrolateral headnerve - nz peripheric neuron - ncp peripheric nerve commissure - nvp longitudinal peripheric nerve - o lateral ovary - oc oocyte - oo oogonium - ow wall cells of the ovary - p secretory pore - ph pharynx - po palpar organ - phb pharyngeal bulbs - phl pharyngeal lumen - phn nerve plexus of the pharynx wall - sa anterior sense organ - sg secretory granules - sh sensory hair cell - sp posterior sense organ - st supporting stick - su supporting cell - sv synaptic vesicles - sy synaptic gap - t testicles - tl testicular lumen - tw wall cells of the testicles and the vas deferens - v ventral - va vacuoles - vd vas deferens - vs vesicles - y y-organ - yc anterior commissure of the y-organ - z yolk granules  相似文献   

4.
Most of the chloroplastb-559 is high potential at neutral pH as defined by hydroquinone reducibility. FCCP* (20 M) and antimycin A (50 M) convert high potentialb-559 to a low potential state which can be reduced by ascorbate but not hydroquinone. The low and high potential states of cytochromeb-559 are different forms of the same cytochrome.Three lines of evidence indicate that the cytb-559 oxidized by photosystem I is low potential: (1) theb-559 photooxidized by far-red light in the presence of FCCP (3 M) is low potentialb-559; (2) the amplitude of theb-559 oxidation by far-red light and the amount of low potentialb-559 present in the dark have the same general dependence on pH; (3) inhibitor studies show that plastoquinone mediates the oxidation of cytb-559 by PS I.The well-known stimulation ofb-559 oxidation by far-red light in the presence of FCCP is attributed to FCCP-facilitated photoconversion of high potentialb-559 to a low potential form.It is concluded that if cytb-559 is oxidized by system I light, then it is a low potential form (E m7+80 mV) which is oxidized. It is not proven, however, that a significant amount of cytb-559 is oxidized by PS I under coupled or physiological conditions.Possible thermodynamic regulation of non-cyclic electron flow involving the distribution between high and low potential forms of cytb-559 is discussed.  相似文献   

5.
Steviol(ent-13-hydroxykaur-16-en-19-oic acid) is rapidly metabolised by the mutant B1-41a of Gibberellafujikuroi. The initial product is the ent- 7-α-hydroxy derivative which is then further metabolised to gibberellins A1, A18, A19, A20, 13-hydroxy GA12, the ent-6α, 7α, 13- and ent-6β, 7α, 13 (19,6-lactone)-trihydroxykaurenoic acids, and a seco-ring B diacid. This apparently low substrate specificity of the enzymes operative beyond the block in the mutant B1-41a provides a useful model for the biosynthetic pathways to 13-hydroxylated gibberellins of higher plants and a preparative route to these plant gibberellins.  相似文献   

6.
In the presence of suitable acceptor molecules, dextransucrase makes a homologous series of oligosaccharides in which the isomers differ by a single glucosyl unit, whereas alternansucrase synthesizes one trisaccharide, two tetrasaccharides, etc. Previously, we showed that alternansucrase only forms certain isomers of DP > 4 from maltose in measurable amounts, and that these oligosaccharides belong to the oligoalternan series rather than the oligodextran series. We now demonstrate that the acceptor products from gentiobiose, also formed in good yields (nearly 90% in unoptimized reactions), follow a pattern similar to those formed from maltose. The initial product is a single trisaccharide, α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc. Two tetrasaccharides were formed in approximately equal quantities: α-d-Glcp-(1→3)-α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc and α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc. Just one pentasaccharide was isolated from the reaction mixture, α-d-Glcp-(1→6)-α-d-Glcp-(1→3)-α-d-Glcp-(1→6)-β-d-Glcp-(1→6)-d-Glc. Our hypothesis that the enzyme is incapable of forming two consecutive α-(1→3) linkages, and does not form products with more than two consecutive α-(1→6) linkages, apparently applies to other acceptors as well as to maltose. The glucosylation of gentiobiose reduces or eliminates its bitter taste.  相似文献   

7.
Summary Scypha ciliata is a syconoid sponge. Its oocytes differentiate from choanocytes located near the apopyle of a flagellated chamber, and initially they remain in that location, in a trophic complex with neighbouring choanocytes. When this first growth phase is completed, the oocyte migrates to the periphery of the sponge. There it undergoes a second growth phase, in which it phagocytizes choanocytes and mesenchyme cells.Fertilization of the mature egg is assisted by a converted choanocyte, the sperm carrier cell. This cell penetrates the oocyte and transfers to it the sperm contained in a carriercell vacuole. No meiotic events have yet been observed.Cleavage is asynchronous, with holoblastic, approximately equal divisions. After the first cleavage steps the blastomeres often contain multiple nuclei. The single-layered blastoderm of the stomoblastula consists of many micromeres with flagella that project into the blastocoel, a few macromeres and four cruciform cells. There is no development of a follicle epithelium.The stomoblastula develops into the amphiblastula by inversion; with the assistance of the maternal choanocyte epithelium, the hollow sphere turns inside out, simultaneously moving out of the mesoderm and into the lumen of the adjacent flagellated chamber. In this process, the blastocoel of the stomoblastula is lost. The flagellated cells that form the wall of the amphiblastula now have their flagella extending outward; the amphiblastula also comprises four cruciform cells, macrogranular and agranular cells. The larval cavity of the amphiblastula is a newly formed structure.Abbreviations AB amphiblastula - AP apopyle - BC blastocoel - aC agranular cell - maC macrogranular cell - miC microgranular cell - CB crystalline body - CC central cavity - Ch choanocyte - fCh flat choanocyte - gCh granulate choanocyte - CM cell membrane - Co collar of choanocyte - CrC cruciform cell - DM dense material - EM electron micrograph - F flagellum - FC flagellated cell - FCm flagellated chamber - FL free larva - FV food vacuole - IR interior region - LC larval cavity - M mesenchyme - Ma macromere - MC mesenchyme cell - Mi micromere - N nucleus - Nu nucleolus - O opening - OC oocyte - P psudopodium - PC pinacocyte - PhM phase-contrast micrograph - Po pore - PP prosopyle - S sperm - SB stomoblastula - SC segmentation cavity - SCC sperm-carrier cell - SV sperm vacuole - lT large trophocyte - sT small trophocyte - V vacuole - VC vesicular cytoplasm - VM vacuole membrane  相似文献   

8.
The crystal structures of L -3,4-dehydroproline, t-butoxycarbonyl-L -3,4-dehydroproline amide, and acetyl-L -3,4-dehydroproline amide have been determined. L -3,4-Dehydroproline is orthorhombic with a = 16.756, b = 5.870, c = 5.275 Å, and Z = 4; t-butoxycarbonyl-L -3,4-dehydroproline amide is orthorhombic with a = 6.448, b = 8.602, c = 21.710 Å, and Z = 4; acetyl-L -3,4-dehydroproline amide is monoclinic with a = 4.788, b = 10.880, c = 7.785 Å, β = 105.25°, and Z = 2. The final R value for the L -3,4-dehydroproline is 0.046 based on 529 reflections; for t-butoxycarbonyl-L -3,4-dehydroproline amide, 0.050 based on 792 reflections; and for acetyl-L -3,4-dehydroproline amide, 0.058 based on 632 reflections. The structures clearly establish that the free amino acid exists in the zwitterionic form in the crystalline state. The molecular conformations of the t-Boc and acetyl derivatives consist of two planes: one involving the primary amide and the other the remaining atoms of the molecule. The acetyl-L -3,4-dehydroproline amide contains a tertiary amide bond in the cis conformation. To the best of our knowledge, this is the first example of a cis bond in an acetyl derivative of an amino acid or peptide. At variance with the previously reported proline amides, which present ? and ψ values corresponding to those of a right-handed α-helical conformation (conformation A), the t-Boc and acetyl derivatives both have ? and ψ values corresponding to a collagenlike conformation (conformation F).  相似文献   

9.
Summary The skin vascularization was investigated troughout the ontogenetic development and in adults of two anurans, Rana temporaria and Bufo bufo, and two urodeles, Triturus vulgaris and Triturus cristatus. It was found that, contrary to the urodele larvae, the anuran tadpoles have a very sparse skin vascularization. During the early stages of anuran metamorphosis the skin capillary network becomes dense; later, during skin metamorphosis, a second, venous, network is formed as anastomoses between the subcutaneous vein ramifications. In the urodeles, metamorphosis is not accompanied by any significant morphological changes in the skin vascularization, and a subcutaneous network is not formed. It is suggested that the reduced skin vascularization in anuran tadpoles is an advanced larval character relative to the rich vascularization of the skin in urodele larvae. It is further suggested that anuran tadpoles have a reduced ability to utilize gaseous exchange through the skin. The function of the subcutaneous venous network found in anurans after metamorphosis is obscure; experiments indicate a vasomotor regulation which is neither adrenergic nor cholinergic.Abbreviations a arteriole - A artery - an anastomosis between the subepidermal capillary network and the subcutaneous venous network - C stratum compactum - E epidermis - ec subepidermal capillaries - S stratum spongiosum - sv subcutaneous venous network - v venule - V vein - vc venae comitantes  相似文献   

10.
A mutant ofChlamydomonas reinhardtii phr-1-1 is deficient in the photorepair of pyrimidine dimers in nuclear DNA but not in chloroplast DNA. In this report, a second photoreactivation-deficient strain, phr-1-2, which has a similar phenotype as phr-1-1, is described. To determine if these mutations were in different genes, complementation tests as well as tetrad analysis were performed. Six diploid strains were constructed. The diploid strains containing one mutation exhibited similar UV-light survival curves under photoreactivating conditions as the wild-type diploid, indicating recessive nature of the mutations. No increase in survival was obtained with phr-1-1 phr-1-2 compared with either the phr-1-1 phr-1-1 or phr-1-2 phr-1-2 diploids indicating a lack of complementation. The amount of DNA photolyase activity in cell-free extracts of diploids with one mutation was not significantly different from extracts of wild-type diploids indicating a lack of gene dosage. The amount of DNA photolyase activity in extracts from the phr-1-1 phr-1-2 was no greater than found in the phr-1-1 phr-1-1 or phr-1-2 phr-1-2 diploids, confirming a lack of complementation of the mutations. Analysis of 106 tetrads from a cross ofphr-1-1 arg2×phr-1-2 arg7 indicated thatphr-1-1 andphr-1-2 were mutations in the same gene.  相似文献   

11.
A newly isolated soil-actinomycete, Actinomadura strain R10 (NRRL B-11411), produces an extracellular isomaltodextranase (optinal pH, 5.0) that was purified to homogeneity. It exolytically releases isomaltose and a minor trisaccharide product,α-d-Glcp-(1→3)-α-d-Glcp, from dextran B-512 and, in addition, forms transient transisomaltosylation products. This pattern of products is qualitatively similar to that previously reported for the isomaltodextranase (EC 3.2.1.94, optimal pH, 4-0) of Arthrobacter globiformis T6 (NRRL B-4425). The Arthrobacter isomaltodextranase is most active on the (1→6)-α-d-glucopyranosidic linkage, but the relative activity increases with the degrees of polymerization of isomalto-oligosaccharide substrates. In contrast, the relative activity of Actinomadura isomaltodextranase is almost constant throughout the same series of substrates, and is much higher on 3 O- and 4-O-α-isomaltosyl-oligosaccharides than that exhibited by the Arthrobacter enzyme; the activity of Actinomadura isomaltodextranase on the α-(1→4) linkage is 3-4 times greater than on the α-(1→6). These results indicate that, generically, the bacterial isomaltodextranase is a glycanase, whereas the actinomycetal enzyme is a glycosidase. This difference is reflected in the hydrolysis of dextrans, especially of dextran B-1355 (fraction S), which has a high content of unbranched α-(1→3) linked residues. In the digest of this dextran with Arthrobacter isomaltodextranse, short-chain fragments accumulated that were absent when the Actinomadura enzyme was employed.  相似文献   

12.
The development of insulin resistance in the obese individual could impair the ability to appropriately adjust metabolism to perturbations in energy balance. We investigated a 12- vs. 48-h fast on hepatic glucose production (R(a)), peripheral glucose uptake (R(d)), and skeletal muscle insulin signaling in lean and obese subjects. Healthy lean [n = 14; age = 28.0 +/- 1.4 yr; body mass index (BMI) = 22.8 +/- 0.42] and nondiabetic obese (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5) subjects were studied following a 12- and 48-h fast during 2 h of rest and a 3-h 40 mUxm(-2)xmin(-1) hyperinsulinemic-euglycemic clamp (HEC). Basal glucose R(a) decreased significantly from the 12- to 48-h fast (lean 1.96 +/- 0.23 to 1.63 +/- 0.15; obese 1.23 +/- 0.07 to 1.07 +/- 0.07 mgxkg(-1)xmin(-1); P = 0.004) and was equally suppressed during the HEC after both fasts. The increase in glucose R(d) during the HEC after the 12-h fast was significantly decreased in lean and obese subjects after the 48-h fast (lean 9.03 +/- 1.17 to 4.16 +/- 0.34, obese 6.10 +/- 0.77 to 3.56 +/- 0.30 mgxkg FFM(-1)xmin(-1); P < 0.001). After the 12- but not the 48-h fast, insulin-stimulated AKT Ser(473) phosphorylation was greater in lean than obese subjects. We conclude that 1) 48 h of fasting produces a marked decline in peripheral insulin action, while suppression of hepatic glucose production is maintained in lean and obese men and women; and 2) the magnitude of this decline is greater in lean vs. obese subjects.  相似文献   

13.
Summary Sperm ultrastructure and spermiogenesis of the enteropneust hemichordate Saxipendium coronatum conforms to the general pattern of the prototype spermatozoon found in many phyla. The sperm is about 29 m long, including head, middle piece, and tail. The Saxipendium spermatozoon has some unique features. The head is pyramidal in shape and the nucleus has four frontal ridges radiating from the base of the acrosomal region. The acrosome is composed of a large acrosomal vesicle surrounded by periacrosomal material. The acrosomal region projects about 1 m in front of the nucleus and has a width at the base of 1.5 m. The middle piece is dish-shaped and contains a large mitochondrial mass surrounding the centriolar region. The centriolar region is partially located in a centriolar fossa at the basal part of the nucleus. In spermatids, an anchoring fiber apparatus is observed surrounding the centriolar region. The distal ends of the fibers are attached to the plasmalemma by electron-dense thickenings. The tail is a simple flagellum. The sperm of Saxipendium and the small eggs found in the female suggest non-specialized external fertilization and embryogeny leading to a planktotrophic larva. The main results of the fine structure of the spermatozoon in Saxipendium are summarized in Fig. 12.Abbreviations used in the figures an antrum - av acrosomal vesicle - ax axoneme - d distal centriole - ep epidermis - f flagellum - gp gonopore - m mitochondrion - mp middle piece - n nucleus - p proximal centriole - per periacrosomal material - sp sperm - te testis - vac vacuolated cells  相似文献   

14.
Gb3 and iGb3 are physiologically important trihexosylceramides with a terminal α-d-Galp-(1→4)-β-d-Galp- and α-d-Galp-(1→3)-β-d-Galp sequence, respectively. In particular iGb3 is attracting considerable attention as it is believed to serve as a ligand for natural killer T cells. Whether or not iGb3 is present in humans and which enzyme might be responsible for its synthesis is at present a matter of lively debate. In the current investigation we evaluated human blood group B galactosyltransferase (GTB) for its ability to catalyze the formation of iGb3 from lactosylceramide and UDP-Galp. GTB is a retaining glycosyltransferase that in vivo catalyzes the transfer of galactose from UDP-Galp donors to OH-3 of Galp on the H-antigen (α-l-Fucp-(1→2)-β-d-Galp) acceptor forming the blood group B antigen. GTB tolerates modifications in donor and acceptor substrates and its ability to accept lactosides as acceptors makes it a possible candidate for iGb3 production in humans. For comparison iGb3 and Gb3 were also synthesized from the same acceptor using an α-(1→3)- and α-(1→4)-specific galactosyltransferase, respectively. All the enzymes tested catalyzed the desired reactions. Product characterization by NMR analysis clearly differentiated between the α-Galp-(1→3)-Galp and α-Galp-(1→4)-Galp product, with the GTB product being identical to that of the α-(1→3)-GalT-catalyzed reaction. The rate of transfer by GTB however was very low, only 0.001% of the rate obtained with a good substrate, H antigen disaccharide (octyl α-l-Fucp-(1→2)-β-d-Galp). This is too low to account for the possible formation of the iGb3 structure in humans in vivo.  相似文献   

15.
In Vitro Cellular & Developmental Biology - Plant - Papaver degenii (Urum. &amp; Jav.) Kuzmanov is a Bulgarian glacial relict which is reported as part of Papaver alpinum subsp. alpinum by...  相似文献   

16.
The findings presented in this paper support the suggestion that in the cyanobacterium Anabaena variabilis photobleaching is the result of an increased intracellular level of singlet molecular oxygen, whereas photoinhibition is controlled by a different molecular mechanism. Photobleaching of Anabaena trichomes can be prevented effectively by gassing with argon, nitrogen and carbon dioxide as well as by treatment with the 1O2 quenchers sodium azide and crocetin, and finally, with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). On the other hand, photodynamically active compounds, capable of 1O2 generation, increase photobleaching drastically. Thus, photobleaching is probably caused by singlet molecular oxygen. Photoinhibition studied with the aid of the fluorescence induction was not prevented by most of the treatments which prevent photobleaching. Therefore, different control mechanisms have to be assumed for this process.Abbreviations DABCO 1,4-diazabicyclo(2,2,2)octane - DBMIB dibromothymoquinone = (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - C-PC C-phycocyanin - Chl a chlorophyll a - LFE low fluence rate exposure - HFE high fluence rate exposure  相似文献   

17.
A. Wild  J. Belz  W. Rühle 《Planta》1981,153(4):308-311
Noncyclic electron transport to ferricyanide and photophosphorylation as well as the methylviologen mediated aerobic and anaerobic photophosphorylation with dichlorophenolindophenol-ascorbate as the electron donor of photosystem I were measured during the development of high-light and low-light adapted leaves of Sinapis alba. Anaerobic methylviologen-catalyzed phosphorylation is more than twice as high as aerobic phosphorylation. The difference between the rates of aerobic and anaerobic phosphorylation is sensitive to dibromothymoquinone. Thus, under anaerobic conditions, methylviologen mediates a cyclic phosphorylation including plastoquinone. All photochemical activities of high-light chloroplasts are about twice as high as that of low-light chloroplasts and show a permanent decline with increasing plant age. The lower activities of low-light chloroplasts correlate with a decrease of electron transport components, such as cytochrome f. This indicates that the number of electron transport chains is decreased under low-light conditions and more chlorophyll molecules interact with one electrontransport chain.Abbreviations Asc ascorbate - Chl chlorophyll a+b - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(dichlorophenyl)-1,1-dimethylurea - DCPIP dichlorophenolindophenol - HL high light - LL low light - MV methylviologen - PhAR photosynthetically active radiation - PS photosystem  相似文献   

18.
19.
Objective:The primary purpose of this research was to describe nurse and pharmacist knowledge of setup requirements for intravenous (IV) smart pumps that require head height differentials for accurate fluid flow.Methods:A secondary analysis of anonymous electronic survey data using a database of prerecruited clinicians was conducted. A survey was sent by email to 173 pharmacists and 960 nurses. The response rate for pharmacists was 58% (100 of 173), and the response rate for nurses was 52% (500 of 960). After removing respondents who did not provide direct care and who did not use a head height differential IV infusion system, the final sample for analysis was 186 nurses and 25 pharmacists.Results:Overall, less than one-half of respondents (40%) were aware that manufacturer guidelines for positioning the primary infusion bag relative to the infusion pump were available. Slightly more (49.5%) were aware of the required head height differentials for secondary infusion. Only five respondents selected the correct primary head height, eight respondents selected the correct secondary head height, and one respondent selected both the correct primary and secondary head heights.Conclusion:The results of this study identify a substantial lack of knowledge among frontline clinicians regarding manufacturer recommendations for accurate IV administration of primary and secondary infusions for head height differential infusion systems. Both increased clinician education and innovative technology solutions are needed to improve IV smart pump safety and usability.

Large-volume intravenous (IV) smart pumps are the most widely used infusion devices in U.S. acute care hospitals due to their versatility in administering both fluids and medications.1,2 Recent data from U.S. acute care settings support an adoption rate of 99% for IV smart pumps with built-in dose error reduction software designed to mitigate medication administration errors.3 Although data support that IV smart pumps can reduce medication administration errors, they have not eliminated error, including serious adverse drug events with high-alert medications.410Secondary medication administration by large-volume IV smart pump is used extensively in U.S. acute care settings for administering IV medications ordered for one-time or intermittent dosing. The most commonly used method for secondary administration requires the primary continuous infusion to pause during the secondary infusion, then resume automatically after the secondary infusion is complete.1,1113 The secondary infusion delivery method typically is used for administration of antibiotics and electrolyte replacement therapy.14Research has identified secondary medication infusions as particularly error prone.12,14 Both the setup and usability of most IV smart pump systems are complex, vary among different IV smart pump types, and have numerous associated failure modes that are not easily detected at the point of care.12 The majority of secondary medications are infused using the “head height differential” method, which requires a differential between the top of the fluid level in the primary and secondary fluid containers. These differentials generate the hydrostatic pressure required to close the primary tubing back-check valve and facilitate accurate secondary medication infusion (Figure 1).Open in a separate windowFigure 1.Required components for secondary medication infusion using the head height differential method. Used with permission from Karen K. Giuliano.IV smart pump systems from BD/Alaris, Baxter/Sigma, B. Braun, and Zyno use this method, with each having specific head height differentials and setup requirements.1518 In contrast, a cassette pumping mechanism is used for other devices (e.g., manufactured by ICU Medical Plum and Ivenix) pumps. The user setup requirements for these cassette systems do not require a head height differential or back-check valve. Instead, when administering a secondary medication, the cassette provides a separate fluid path for secondary infusion, which is controlled independently from the primary infusion.It is important for nurses to be educated regarding the setup requirements of the IV smart pump system they are using, in order to avoid potentially dangerous secondary medication error caused by inaccurate flow.  相似文献   

20.
The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS).1 The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC50 of 20 nM and a MIC of 0.8 μg/mL against a sensitized strain of Escherichia coli (HS294 E. coli).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号