首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A central goal in evolutionary ecology is to characterize and identify selection patterns on the optimal phenotype in different environments. Physiological traits, such as hormonal responses, provide important mechanisms by which individuals can adapt to fluctuating environmental conditions. It is therefore expected that selection shapes hormonal traits, but the strength and the direction of selection on plastic hormonal signals are still under investigation. Here, we determined whether, and in which way, selection is acting on the hormones corticosterone and prolactin by characterizing endocrine phenotypes and their relationship with fitness in free‐living great tits, Parus major. We quantified variation in circulating concentrations of baseline and stress‐induced corticosterone and in prolactin during the prebreeding (March) and the breeding season (May) for two consecutive years, and correlated these with reproductive success (yearly fledgling number) and overwinter survival in female and male individuals. In both years, individuals with high baseline corticosterone concentrations in March had the highest yearly fledgling numbers; while in May, individuals with low baseline corticosterone had the highest yearly reproductive success. Likewise, individuals that displayed strong seasonal plasticity in baseline corticosterone concentrations (high in March and low in May) had the highest reproductive success in each year. Prolactin concentrations were not related to reproductive success, but were positively correlated to the proximity to lay. Between‐year plasticity in stress‐induced corticosterone concentrations of males was related to yearly variation in food abundance, but not to overall reproductive success. These findings suggest that seasonally alternating directional selection is operating on baseline corticosterone concentrations in both sexes. The observed between‐year consistency in selection patterns indicates that a one‐time hormone sample in a given season can allow the prediction of individual fitness.  相似文献   

2.
Hormones play a central role in integrating internal and external cues to help mediate life-history decisions as well as changes in behavior and physiology of individuals. Describing the consistency of endocrine traits within and among individuals is an important step for understanding whether hormonal traits are dependable predictors of phenotypes that selection could act upon. However, few long-term field studies have investigated the individual consistency of hormonal traits. Glucocorticoid hormones mediate homeostatic responses to environmental variation as well as stress responses to acute, unpredictable disturbances. We characterized the repeatability of plasma corticosterone concentrations in two species of free-living passerines across multiple years. We found repeatability in baseline corticosterone concentrations in both sexes of great tits (Parus major) and in female tree swallows (Tachycineta bicolor) within the breeding season but no repeatability of this trait among seasons or across years. Stress-induced levels of corticosterone were only assessed in great tits and were not repeatable in either sex. Our data suggest that in line with their function in mediating responses of individuals to longer-term and acute demands, both baseline and stress-induced plasma corticosterone concentrations are rather plastic traits. However, individuals may differ in their degree of trait plasticity and hence in behavioral and physiological responses to a variety of organismal challenges.  相似文献   

3.
《Hormones and behavior》2012,61(5):559-564
Hormones play a central role in integrating internal and external cues to help mediate life-history decisions as well as changes in behavior and physiology of individuals. Describing the consistency of endocrine traits within and among individuals is an important step for understanding whether hormonal traits are dependable predictors of phenotypes that selection could act upon. However, few long-term field studies have investigated the individual consistency of hormonal traits. Glucocorticoid hormones mediate homeostatic responses to environmental variation as well as stress responses to acute, unpredictable disturbances. We characterized the repeatability of plasma corticosterone concentrations in two species of free-living passerines across multiple years. We found repeatability in baseline corticosterone concentrations in both sexes of great tits (Parus major) and in female tree swallows (Tachycineta bicolor) within the breeding season but no repeatability of this trait among seasons or across years. Stress-induced levels of corticosterone were only assessed in great tits and were not repeatable in either sex. Our data suggest that in line with their function in mediating responses of individuals to longer-term and acute demands, both baseline and stress-induced plasma corticosterone concentrations are rather plastic traits. However, individuals may differ in their degree of trait plasticity and hence in behavioral and physiological responses to a variety of organismal challenges.  相似文献   

4.
Hormones mediate major physiological and behavioural components of the reproductive phenotype of individuals. To understand basic evolutionary processes in the hormonal regulation of reproductive traits, we need to know whether, and during which reproductive phases, individual variation in hormone concentrations relates to fitness in natural populations. We related circulating concentrations of prolactin and corticosterone to parental behaviour and reproductive success during both the pre-breeding and the chick-rearing stages in both individuals of pairs of free-living house sparrows, Passer domesticus. Prolactin and baseline corticosterone concentrations in pre-breeding females, and prolactin concentrations in pre-breeding males, predicted total number of fledglings. When the strong effect of lay date on total fledgling number was corrected for, only pre-breeding baseline corticosterone, but not prolactin, was negatively correlated with the reproductive success of females. During the breeding season, nestling provisioning rates of both sexes were negatively correlated with stress-induced corticosterone levels. Lastly, individuals of both sexes with low baseline corticosterone before and high baseline corticosterone during breeding raised the most offspring, suggesting that either the plasticity of this trait contributes to reproductive success or that high parental effort leads to increased hormone concentrations. Thus hormone concentrations both before and during breeding, as well as their seasonal dynamics, predict reproductive success, suggesting that individual variation in absolute concentrations and in plasticity is functionally significant, and, if heritable, may be a target of selection.  相似文献   

5.
Behavior of wild vertebrate individuals can vary in response to environmental or social factors. Such within-individual behavioral variation is often mediated by hormonal mechanisms. Hormones also serve as a basis for among-individual variations in behavior including animal personalities and the degree of responsiveness to environmental and social stimuli. How do relationships between hormones and behavioral traits evolve to produce such behavioral diversity within and among individuals? Answering questions about evolutionary processes generating among-individual variation requires characterizing how specific hormones are related to variation in specific behavioral traits, whether observed hormonal variation is related to individual fitness and, whether hormonal traits are consistent (repeatable) aspects of an individual's phenotype. With respect to within-individual variation, we need to improve our insight into the nature of the quantitative relationships between hormones and the traits they regulate, which in turn will determine how they may mediate behavioral plasticity of individuals. To address these questions, we review the actions of two steroid hormones, corticosterone and testosterone, in mediating changes in vertebrate behavior, focusing primarily on birds. In the first part, we concentrate on among-individual variation and present examples for how variation in corticosterone concentrations can relate to behaviors such as exploration of novel environments and parental care. We then review studies on correlations between corticosterone variation and fitness, and on the repeatability over time of corticosterone concentrations. At the end of this section, we suggest that further progress in our understanding of evolutionary patterns in the hormonal regulation of behavior may require, as one major tool, reaction norm approaches to characterize hormonal phenotypes as well as their responses to environments.In the second part, we discuss types of quantitative relationships between hormones and behavioral traits within individuals, using testosterone as an example. We review conceptual models for testosterone-behavior relationships and discuss the relevance of these models for within-individual plasticity in behavior. Next, we discuss approaches for testing the nature of quantitative relationships between testosterone and behavior, concluding that again reaction norm approaches might be a fruitful way forward.We propose that an integration of new tools, especially of reaction norm approaches into the field of behavioral endocrinology will allow us to make significant progress in our understanding of the mechanisms, the functional implications and the evolution of hormone–behavior relationships that mediate variation both within and among individuals. This knowledge will be crucial in light of already ongoing habitat alterations due to global change, as it will allow us to evaluate the mechanisms as well as the capacity of wild populations to adjust hormonally-mediated behaviors to altered environmental conditions.  相似文献   

6.
Many ecosystems have experienced anthropogenically induced changes in biodiversity, yet predicting these patterns has been difficult. Recently, individual behavioural and physiological measures have been proposed as more rapid links between environmental variation and fitness compared to demographics. Glucocorticoid hormones have received much attention given that they mediate energetic demands, metabolism, and foraging behaviour. However, it is currently unclear whether glucocorticoids can reliably predict environmental and fitness-related traits and whether they may be useful in specific groups of taxa. In particular, seabirds are a well-studied avian group often employed as biomonitoring tools for environmental change given their wide distribution and reliance on large oceanic patterns. Despite the increase in studies attempting to link variation in baseline corticosterone (the primary avian glucocorticoid) to variation in fitness-related traits in seabirds, there has been no comprehensive review of the relationship in this taxon. We present a phylogenetically controlled systematic review and meta-analysis of correlative and experimental studies examining baseline corticosterone as a predictor of fitness-related traits relevant to predicting seabird population health. Our results suggest that, while variation in baseline corticosterone may be a useful predictor of larger-scale environmental traits such as overall food availability and fitness-related traits such as reproductive success, this hormone may not be sensitive enough to detect variation in body condition, foraging effort, and breeding effort. Overall, our results support recent work suggesting that the use of baseline glucocorticoids as conservation biomarkers is complex and highly context dependent, and we suggest caution in their use and interpretation as simplified, direct biomarkers of fitness.  相似文献   

7.
Birds respond to deterioration in environmental conditions by elevating their corticosterone levels, which can enhance their survival. It is less clear if animals constantly living in energetically challenging environment show similar increases in adrenocortical function. Previous work has demonstrated that under controlled conditions black-capped chickadees (Poecile atricapilla) from northern latitudes cache more food and perform better on spatial memory tasks than their southern conspecifics. As elevated levels of corticosterone have been shown previously to correlate with spatial memory performance in chickadees, this study aimed to investigate whether black-capped chickadees from northern latitudes have elevated baseline levels of corticosterone and/or a stronger adrenocortical stress response than their southern conspecifics, irrespective of their immediate environment. We found no differences between Alaskan and Colorado chickadees maintained under identical conditions for 3 months in either baseline levels of corticosterone or maximum levels of corticosterone achieved during the stress response. Baseline corticosterone levels were negatively correlated with relative body mass across both groups of birds. Our results suggest that the population differences in food catching behavior and spatial memory were not related to differences in corticosterone levels. We conclude that many reported population differences in baseline levels and in strength of adrenocortical stress response may often reflect differences in local environmental conditions rather than population-specific physiological traits.  相似文献   

8.
We examined plasticity of the stress response among three populations of the white-crowned sparrow (Zonotrichia leucophrys). These populations breed at different elevations and latitudes and thus have breeding seasons that differ markedly in length. We hypothesize that in populations where birds raise only one or rarely two broods in a season, the fitness costs of abandoning a nest are substantially larger than in closely related populations that raise up to three broods per season. Thus individuals with short breeding seasons should be less responsive to stressors and therefore less likely to abandon their young. In our study, baseline and handling-induced corticosterone levels were similar among populations, but corticosteroid-binding globulins differed, leading to a direct relationship between stress-induced free corticosteroid levels and length of breeding season. There were also population-specific differences in intracellular low-affinity (glucocorticoid-like) receptors in both liver and brain tissue. Although investigations of population-based differences in glucocorticoid secretion are common, this is the first study to demonstrate population-level differences in binding globulins. These differences could lead to dramatically different physiological and behavioral responses to stress.  相似文献   

9.
The stress response—increases in circulating glucocorticoids following a stressor—is typically considered adaptive, but few studies address the fitness consequences of individual variation in stress response. Generally, due to negative consequences of prolonged elevation of glucocorticoids, animals should have a transient stress response just sufficient to cope with the stressor. In rodents, stress responsiveness is affected by early developmental experience, and hyper-responsiveness to stress is linked to morbidity and mortality. We assessed individual variation in stress responses in free-living song sparrows, Melospiza melodia, in relation to fitness-related measures including song and overwinter survival. Birds with greater increases in corticosterone 30 min following restraint stress were less likely to return to breed the following year. Stress responsiveness was also correlated with song complexity: males with fewer syllables in their song repertoires had greater stress reactivity. Our findings support the hypothesis that developmental stressors both impair song development and affect the adult stress response. Thus, individual variation in the stress response may relate to variation in fitness.  相似文献   

10.
Because glucocorticoid (stress) hormones fundamentally affect various aspects of the behaviour, life history and fitness of free-living vertebrates, there is a need to understand the environmental factors shaping their variation in natural populations. Here, we examined whether spatial heterogeneity in breeding territory quality affected the stress of colonial king penguin (Aptenodytes patagonicus). We assessed the effects of local climate (wind, sun and ambient temperature) and social conditions (number of neighbours, distance to neighbours) on the baseline levels of plasma total corticosterone (CORT) in 77 incubating and 42 chick-brooding birds, breeding on territories of central or peripheral colony location. We also assessed the oxidative stress status of a sub-sample of central vs. peripheral chick-brooders to determine whether chronic stress arose from breeding on specific territories. On average, we found that brooders had 55 % higher CORT levels than incubators. Regardless of breeding status, central birds experienced greater social density (higher number of neighbours, shorter distance between territories) and had higher CORT levels than peripheral birds. Increasing social density positively explained 40 % of the variation in CORT levels of both incubators and brooders, but the effect was more pronounced in brooders. In contrast, climate was similar among breeding territories and did not significantly affect the CORT levels of breeding birds. In brooders, oxidative stress status was not affected by local density or weather conditions. These results highlight that local heterogeneity in breeding (including social) conditions may strongly affect the stress levels of breeding seabirds. The fitness consequences of such variation remain to be investigated.  相似文献   

11.
Accumulating evidence suggests that within‐individual plasticity of behavioural and physiological traits is limited, resulting in stable among‐individual differences in these aspects of the phenotype. Furthermore, these traits often covary within individuals, resulting in a continuum of correlated phenotypic variation among individuals within populations and species. This heterogeneity, in turn, affects individual fitness and can have cross‐generational effects. Patterns of trait covariation, among‐individual differences, and subsequent fitness consequences have long been recognized in reptiles. Here, we provide a test of patterns of among‐individual heterogeneity in behaviour and physiology and subsequent effects on reproduction and offspring fitness in the garter snake Thamnophis elegans. We find that measures of activity levels vary among individuals and are consistent within individuals in reproductive female snakes, indicating stable behavioural phenotypes. Blood hormone and glucose concentrations are not as stable within individuals, indicating that these traits do not describe consistent physiological phenotypes. Nonetheless, the major axes of variation in maternal traits describe behavioural and physiological phenotypes that interact to predict offspring body condition and mass at birth. This differential allocation of energy to offspring, in turn, strongly influences subsequent offspring growth and survival. This pattern suggests the potential for strong selection on phenotypes defined by behaviour–physiology interactions.  相似文献   

12.
Competitive ability is a major determinant of fitness, but why individuals vary so much in their competitiveness remains only partially understood. One increasingly prevalent view is that realized competitive ability varies because it represents alternative strategies that arise because of the costs associated with competitiveness. Here we use a population of great tits (Parus major) to explore whether individual differences in competitive ability when foraging can be explained by two traits that have previously been linked to alternative behavioural strategies: the personality trait 'exploration behaviour' and a simple cognitive trait, 'innovative problem-solving performance'. We assayed these traits under standardized conditions in captivity and then measured competitive ability at feeders with restricted access in the wild. Competitive ability was repeatable within individual males across days and correlated positively with exploration behaviour, representing the first such demonstration of a link between a personality trait and both competitive ability and food intake in the wild. Competitive ability was also simultaneously negatively correlated with problem-solving performance; individuals who were poor competitors were good at problem-solving. Rather than being the result of variation in 'individual quality', our results support the hypothesis that individual variation in competitive ability can be explained by alternative behavioural strategies.  相似文献   

13.
Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is a key component of the vertebrate stress response. Prior studies have found that variation in HPA responses were correlated to measures of fitness and physiological condition. In addition, sexually-selected traits have also been found to correlate to measures of condition. The proximate mechanisms responsible for such covariation between sexually selected traits and measures of quality are unclear, but could involve variation in HPA regulation. We investigated whether HPA activity is related to song complexity, body size/condition and leukocyte profiles in wild male song sparrows (Melospiza melodia). We characterized three aspects of HPA activity: 1) response to restraint stress; 2) negative feedback, assessed by the ability of exogenous dexamethasone to suppress corticosterone levels; and 3) adrenal sensitivity to exogenous adrenocorticotropic hormone (ACTH). Birds with lower responses to restraint stress had more complex song and more heterophils and higher heterophil to lymphocyte (H:L) ratios. Birds with more effective negative feedback were larger and had fewer heterophils and lower H:L ratios, suggesting lower levels of physiological stress or infection. We observed no relationship between adrenal sensitivity to exogenous ACTH and any of the factors. These findings illustrate important relationships between HPA activity, song complexity, and morphological and physiological traits. Song complexity may thus provide receivers with information about the ability of the singer to cope with stressors.  相似文献   

14.
In winter, dabbling ducks gather in large flocks and males compete not only for food resources but also for mates. Setting up a social hierarchy is one way to reduce the costs of conflicts, but the position in the hierarchy has implications for individuals, for instance their susceptibility to conflict and interference, hence to social stress. We investigated relationships between linear social dominance and corticosterone levels, baseline levels and induced-stress response, in captive male mallards Anas platyrhynchos and pintails Anas acuta during the winter period. We hypothesised that corticosterone responses would reflect the costs associated with social stress. From previous work on dominance and corticosterone in wintering birds, we expected that, where the social hierarchy is linear, there would be (1) no relationship between social ranks and baseline corticosterone levels and (2) a significant positive relationship between dominance ranks and responses to acute stress. Our results demonstrated the existence of a linear hierarchy in both species (h' = 0.95 for mallards and h' = 0.97 for pintails), and we found that pintails had on average more corticosterone than mallards. The relationship between dominance and corticosterone responses followed the predictions, with no differences for baseline levels and an attenuated response to induced-stress for subordinates. We discuss these results in the perspective of the cost-benefits of dominance and wintering strategies of waterbirds.  相似文献   

15.
Telomere length (TL) is a candidate biomarker of ageing and phenotypic quality, but little is known of the (physiological) causes of TL variation. We previously showed that individual common terns Sterna hirundo with high reproductive success had short telomeres independent of age, and this pattern was particularly strong in the longer telomeres of the within‐individual TL distribution. To test whether this relation can be attributed to effects of reproductive effort, we investigated baseline corticosterone in relation to reproductive success (number of fledglings) and TL. In this context, we assume that variation in baseline corticosterone can be interpreted as index of energy expenditure and allostatic load. Males with higher corticosterone levels during incubation, compared between and within individuals, achieved higher reproductive success and had shorter telomeres. The effect on telomeres was more pronounced in corticosterone measured later in incubation and in the longer telomeres of the within‐individual TL distribution. Female corticosterone level during incubation was neither related to reproductive success nor to TL. That we observed these effects only in males mirrors different parental roles during reproduction in the common tern, where males do most of the chick provisioning. The negative association between reproductive success and TL suggests individual differences in reproductive effort as reflected in, or mediated by, baseline corticosterone. We see this result as a promising step towards unravelling the physiological causes of variation in TL and the costs of reproduction.  相似文献   

16.
Summary We present a mathematical model for predicting the expected fitness of phenotypically plastic organisms experiencing a variable environment. We assume that individuals experience two discrete environments probabilistically in time (as a Markov process) and that there are two different phenotypic states, each yielding the highest fitness in one of the two environments. We compare the expected fitness of a phenotypically fixed individual to that of an individual whose phenotype is induced to produce the better phenotype in each environment with a time lag between experiencing a new environment and realization of the new phenotype. Such time lags are common in organisms where phenotypically plastic, inducible traits have been documented. We find that although plasticity is generally adaptive when time lags are short (relative to the time scale of environmental variability), plasticity can be disadvantageous for longer lag times. Asymmetries in environmental change probabilities and/or the relative fitnesses of each phenotype strongly influence whether plasticity is favoured. In contrast to other models, our model does not require costs for plasticity to be disadvantageous; costs affect the results quantitatively, not qualitatively.  相似文献   

17.
We used the "morphology-performance-fitness" paradigm (Arnold, 1983) as our framework to investigate endocrine control of performance and fitness in Sceloporus undulatus (Eastern Fence Lizard). Focusing on males, we used the "natural experiments" of seasonal, sexual, and developmental variation in growth and in exercise endurance to identify testosterone and corticosterone as potential modulators of performance and related traits of interest. We followed with experimental manipulations of testosterone to investigate functional relationships, both in the laboratory and in the field. Further, we used focal observations and demographic studies, coupled with genetic determination of paternity, to test associations between performance and fitness, measured as reproductive success. We found that in males, endurance and plasma concentrations of testosterone and corticosterone are at their peaks in the spring breeding season, when lizards are most actively engaged in patrolling home ranges and in reproductive behavior. At that time, plasma concentrations of testosterone are correlated with body size; plasma concentrations of corticosterone and parameters of home range, including area and the number of overlapped females, are correlated with home-range overlap between males and females. During prereproductive development, males (but not females) experience a maturational increase in plasma testosterone. At about the same time, they become more active, expand their home ranges, and grow less quickly than do females, suggesting a trade-off in the allocation of energy, mediated by testosterone. Experimentally, testosterone has positive effects on fitness by stimulating endurance and reproductive activity and increasing home-range area, but it exacts costs in fitness by increasing ectoparasitism, decreasing growth, and decreasing survivorship. We found evidence of selection on body size, endurance, and home-range size (and thus access to potential mates). Despite having positive effects on performance traits, plasma concentrations of testosterone were not correlated with number of offspring sired by males. However, we found a strong correlation between the level of plasma corticosterone and the number of offspring sired. We also found evidence of size-assortative mating, indicating that for males, both the number and the size (and thus, fecundity) of their mates increase with body size. Our studies exemplify the power of natural history combined with experimental endocrine manipulations to identify hormonal regulators of performance and linkages to fitness. Furthermore, our results illustrate ecological and evolutionary significance of individual variation in endocrine traits.  相似文献   

18.
The existence of consistent individual differences in behavioral strategies ("personalities" or coping styles) has been reported in several animal species. Recent work in great tits has shown that such traits are heritable and exhibit significant genetic variation. Free-living birds respond to environmental stresses by up-regulating corticosterone production. Behavior during mild stress can occur in accordance to two types of coping styles, i.e. active and passive. Using artificially selected lines of zebra finches that vary in the amount of corticosterone produced in response to a manual restraint stressor we ran three "personality" experiments. We show that birds in the different corticosterone lines differ in their exploratory and risk-taking behaviors. There was an increase in exploratory behavior as corticosterone titre increased but only in the low corticosterone line. Birds in high corticosterone line showed greater risk-taking behavior than birds in the other lines. Thus, in general, higher levels of circulating corticosterone following a mild stress result in greater exploratory behavior and greater risk taking. This study shows that lines of animals selected for endocrine hormonal responses differ in their "coping" styles or "personalities".  相似文献   

19.
Organisms are capable of an astonishing repertoire of phenotypic responses to the environment, and these often define important adaptive solutions to heterogeneous and unpredictable conditions. The terms ‘phenotypic plasticity’ and ‘canalization’ indicate whether environmental variation has a large or small effect on the phenotype. The evolution of canalization and plasticity is influenced by optimizing selection‐targeting traits within environments, but inherent fitness costs of plasticity may also be important. We present a meta‐analysis of 27 studies (of 16 species of plant and 7 animals) that have measured selection on the degree of plasticity independent of the characters expressed within environments. Costs of plasticity and canalization were equally frequent and usually mild; large costs were observed only in studies with low sample size. We tested the importance of several covariates, but only the degree of environmental stress was marginally positively related to the cost of plasticity. These findings suggest that costs of plasticity are often weak, and may influence phenotypic evolution only under stressful conditions.  相似文献   

20.
Costs of phenotypic plasticity are important for the evolution of plasticity because they prevent organisms from shaping themselves at will to match heterogeneous environments. These costs occur when plastic genotypes have relatively low fitness regardless of the trait value expressed. We report two experiments in which we measured selection on predator-induced plasticity in the behaviour and external morphology of frog tadpoles (Rana temporaria). We assessed costs under stressful and benign conditions, measured fitness as larval growth rate or competitive ability and focused analysis on aggregate measures of whole-organism plasticity. There was little convincing evidence for a cost of phenotypic plasticity in our experiments, and costs of canalization were nearly as frequent as costs of plasticity. Neither the magnitude of the cost nor the variation around the estimate (detectability) was sensitive to environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号