首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Structure-specific ligands are convenient tools for the recognition, targeting or probing of non-canonical DNA structures. Porphyrin derivatives exhibit a preference for interaction with G-quadruplex (G4) structures over canonical duplex DNA and are able to cause photoinducible damage to nucleic acids. Here, we show that Zn(II) 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (ZnP1) interacts with different conformations of the telomeric sequence d(TAGGG(TTAGGG)3) at submicromolar concentrations without any detectible disturbance of the particular fold. Among different folds, potassium (3+1) hybrid G4-structure. reveal the highest affinity to ZnP1. The pattern of guanine oxidation is specific for each telomeric DNA conformation and may serve as an additional tool for probing the G4 topology. The potassium (3+1) and parallel G4 conformations are more susceptible to light-induced oxidation than the sodium G4 conformation or double helix of the telomeric DNA. The major products of the guanine modifications are spiroiminodihydantoin (Sp) and 8-oxoguanine (8-oxoG). ZnP1-induced oxidation of guanines results in the structural rearrangement of parallel and (3+1) G4 conformations yielding an antiparallel-like G4 conformation. The mechanism of the observed light-induced conformational changes is discussed.  相似文献   

3.
In most eukaryotes, telomeric DNA consists of repeats of a short motif that includes consecutive guanines and may hence fold into G-quadruplexes. Budding yeasts have telomeres composed of longer repeats and show variation in the degree of repeat homogeneity. Although telomeric sequences from several organisms have been shown to fold into G-quadruplexes in vitro, surprisingly, no study has been dedicated to the comparison of G-quadruplex folding and stability of known telomeric sequences. Furthermore, to our knowledge, folding of yeast telomeric sequences into intramolecular G-quadruplexes has never been investigated. Using biophysical and biochemical methods, we studied sequences mimicking about four repetitions of telomeric motifs from a variety of organisms, including yeasts, with the aim of comparing the G-quadruplex folding potential of telomeric sequences among eukaryotes. G-quadruplex folding did not appear to be a conserved feature among yeast telomeric sequences. By contrast, all known telomeric sequences from eukaryotes other than yeasts folded into G-quadruplexes. Nevertheless, while G(3)T(1-4)A repeats (found in a variety of organisms) and G(4)T(2,4) repeats (found in ciliates) folded into stable G-quadruplexes, G-quadruplexes formed by repetitions of G(2)T(2)A and G(2)CT(2)A motifs (found in many insects and in nematodes, respectively) appeared to be in equilibrium with non-G-quadruplex structures (likely hairpin-duplexes).  相似文献   

4.
5.
Critical evidence for the biological relevance of G-quadruplexes (G4) has recently been obtained in seminal studies performed in a variety of organisms. Four-stranded G-quadruplex DNA structures are promising drug targets as these non-canonical structures appear to be involved in a number of key biological processes. Given the growing interest for G4, accurate tools to predict G-quadruplex propensity of a given DNA or RNA sequence are needed. Several algorithms such as Quadparser predict quadruplex forming propensity. However, a number of studies have established that sequences that are not detected by these tools do form G4 structures (false negatives) and that other sequences predicted to form G4 structures do not (false positives). Here we report development and testing of a radically different algorithm, G4Hunter that takes into account G-richness and G-skewness of a given sequence and gives a quadruplex propensity score as output. To validate this model, we tested it on a large dataset of 392 published sequences and experimentally evaluated quadruplex forming potential of 209 sequences using a combination of biophysical methods to assess quadruplex formation in vitro. We experimentally validated the G4Hunter algorithm on a short complete genome, that of the human mitochondria (16.6 kb), because of its relatively high GC content and GC skewness as well as the biological relevance of these quadruplexes near instability hotspots. We then applied the algorithm to genomes of a number of species, including humans, allowing us to conclude that the number of sequences capable of forming stable quadruplexes (at least in vitro) in the human genome is significantly higher, by a factor of 2–10, than previously thought.  相似文献   

6.
Reddy MS  Hardin SH 《Biochemistry》2003,42(2):350-362
We have discovered that short guanine-rich oligonucleotides are able to self-associate into higher order structures that stimulate DNA synthesis in vitro without the addition of a conventional template [Ying, J., Bradley, R. K., Jones, L. B., Reddy, M. S., Colbert, D. T., Smalley, R. E., and Hardin, S. H. (1999) Biochemistry 38, 16461-16468]. Our initial analysis indicated the importance of the presence of three contiguous guanines (G) in an oligonucleotide that stimulates DNA polymerization. To gain insight into and to refine sequence requirements for the unexpected DNA synthesis, we analyzed a 231-member guanine-rich octamer library in a fluorescent nucleotide polymerization assay. We observe that, in addition to three contiguous Gs, the presence of a secondary G cluster within the octamer is essential. Furthermore, the location of the primary G cluster in the center of the molecule is most stimulatory. The majority of the octamers that form extended DNA products have a single non-G base separating the primary and secondary G clusters, the identity of which is predominantly thymine (T). Further, a T 5' or 3' of the primary G cluster positively influences the stimulatory function of the oligonucleotide. Overall, the occurrence of bases in the octamer is in the descending order of G > T > A > C. Our studies demonstrate that structures stabilized by noncanonical base pairings are recognized by a DNA polymerase in vitro, and these findings may have relevance within the cell. In particular, the features of these G-rich stimulatory sequences show striking similarities to telomeric sequences that form diverse G-quartet structures in vitro.  相似文献   

7.
The heterogeneity of Epstein-Barr virus (EBV) obtained from P3HR-1 cells has permitted derivation of a distinct subclone of P3HR-1 (L. Heston, M. Rabson, N. Brown, and G. Miller, Nature (London) 295:160-163, 1982). We have analyzed the biologic properties and genomic structure of this subclonal virus (clone 13) compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV compared with those of parental P3HR-1 and B95-8 viruses. Synthesis of EBV proteins in Raji cells superinfected with virus derived from P3HR-1, clone 13, and B95-8 was analyzed both by fluorography of radiolabeled proteins and by immunoblotting. Highly concentrated preparations of clone 13 and B95-8 virus induced most of the spectrum of EBV proteins in Raji cells with the exception of the 145,000-, 140,000-, and 110,000-molecular-weight proteins, which were either undetectable or reduced. Moreover, both clone 13 and B95-8 viruses also induced the same patterns of early antigen diffuse components as the parental P3HR-1 virus did. However, only P3HR-1 virus could induce EBV DNA synthesis in superinfected Raji cells, as determined both by buoyant density centrifugation and by in situ cytohybridization with biotinylated recombinant EBV DNA probes. Defective heterogeneous molecules present in P3HR-1 virus have been implicated in early antigen induction after superinfection of Raji cells. Therefore, Southern blots of clone 13, P3HR-1, and B95-8 viruses were hybridized to recombinant EBV fragments representing the sequences contained within the defective molecules in P3HR-1. The parental P3HR-1 contained the previously described defective molecules. No evidence for defective molecules was found in clone 13 or B95-8 viruses. These data indicate that concentrated preparations of both clone 13 and B95-8 viruses can induce abortive infection in Raji cells, but while the defective molecules are not needed for induction of early antigen diffuse components, they may be required for the induction of viral DNA synthesis.  相似文献   

8.
Accumulating evidence suggests that human genome can fold into non-B DNA structures, when appropriate sequence and favourable conditions are present. Among these, G-quadruplexes (G4-DNA) are associated with gene regulation, chromosome fragility and telomere maintenance. Although several techniques are used in detecting such structures in vitro, understanding their intracellular existence has been challenging. Recently, an antibody, BG4, was described to study G4 structures within cells. Here, we characterize BG4 for its affinity towards G4-DNA, using several biochemical and biophysical tools. BG4 bound to G-rich DNA derived from multiple genes that form G-quadruplexes, unlike complementary C-rich or random sequences. BLI studies revealed robust binding affinity (Kd = 17.4 nM). Gel shift assays show BG4 binds to inter- and intramolecular G4-DNA, when it is in parallel orientation. Mere presence of G4-motif in duplex DNA is insufficient for antibody recognition. Importantly, BG4 can bind to G4-DNA within telomere sequence in a supercoiled plasmid. Finally, we show that BG4 binds to form efficient foci in four cell lines, irrespective of their lineage, demonstrating presence of G4-DNA in genome. Importantly, number of BG4 foci within the cells can be modulated, upon knockdown of G4-resolvase, WRN. Thus, we establish specificity of BG4 towards G4-DNA and discuss its potential applications.  相似文献   

9.
10.
G-quadruplexes are non-canonical structures of nucleic acids, in which guanine bases form planar G-tetrads (G·G·G·G) that stack on each other in the core of the structure. G-quadruplexes generally contain multiple times of four (4n) guanines in the core. Here, we study the structure of G-quadruplexes with only (4n - 1) guanines in the core. The solution structure of a DNA sequence containing 11 guanines showed the formation of a parallel G-quadruplex involving two G-tetrads and one G-triad with a vacant site. Molecular dynamics simulation established the formation of a stable G-triad·water complex, where water molecules mimic the position of the missing guanine in the vacant site. The concept of forming G-quadruplexes with missing guanines in the core broadens the current definition of G-quadruplex-forming sequences. The potential ability of such structures to bind different metabolites, including guanine, guanosine and GTP, in the vacant site, could have biological implications in regulatory functions. Formation of this unique binding pocket in the G-triad could be used as a specific target in drug design.  相似文献   

11.
12.
《Genomics》2022,114(4):110414
Classification of viruses into their taxonomic ranks (e.g., order, family, and genus) provides a framework to organize an abundant population of viruses. Next-generation metagenomic sequencing technologies lead to a rapid increase in generating sequencing data of viruses which require bioinformatics tools to analyze the taxonomy. Many metagenomic taxonomy classifiers have been developed to study microbiomes, but it is particularly challenging to assign the taxonomy of diverse virus sequences and there is a growing need for dedicated methods to be developed that are optimized to classify virus sequences into their taxa. For taxonomic classification of viruses from metagenomic sequences, we developed VirusTaxo using diverse (e.g., 402 DNA and 280 RNA) genera of viruses. VirusTaxo has an average accuracy of 93% at genus level prediction in DNA and RNA viruses. VirusTaxo outperformed existing taxonomic classifiers of viruses where it assigned taxonomy of a larger fraction of metagenomic contigs compared to other methods. Benchmarking of VirusTaxo on a collection of SARS-CoV-2 sequencing libraries and metavirome datasets suggests that VirusTaxo can characterize virus taxonomy from highly diverse contigs and provide a reliable decision on the taxonomy of viruses.  相似文献   

13.
We have compared the properties of the DNA of Epstein-Barr virus (EBV) purified from HR-1 (EBV HR-1 DNA) and B95-8 (EBV B95-8 DNA) continuous lymphoblast cultures. Our data indicate that (i) the S suc of native EBV DNA relative to T4D DNA is 55S. Using the modified Burgi-Hershey relationship (5), we estimate the molecular weight of native EBV DNA is 101 (plus or minus the molecular weight of native FBV DNA by measurement of the length of 3) times 106. Estimation of the molecule relative to form II PM2 DNA yields a value of 105 (plus or minus 3) times 106. (ii) After alkali denaturation, less than 50% of EBV DNA sediments as a single band in alkaline sucrose gradients in the region expected for DNA of 50 times 406 daltons. (iii) Intact EBV HR-1 and EBV B 95-8 DNAs band at 1.718 g/cm3 and a smaller band (approximately 25% of the DNA) AT 1.720 G/CM3. (IV) EBV HR-1 DNA possesses greater than 97% of the sequences of EBV B95-8 DNA. Hybrid DNA molecules formed between (3H)EBV HR-1 DNA and EBV HR-1 DNA or EBV B95-8 DNA had identical thermal stability. EBV B95-8 DNA lacks approximately 15% of the DNA sequences of EBV HR-1 DNA. We interpret these data to mean that EBV B95-8 is derived from a parental EBV through loss of genetic complexity. This defect may be linked to the ability of EBV B95-8 to "transform" lymphocytes invitro.  相似文献   

14.
The nucleotide sequence of cloned wheat dwarf virus DNA   总被引:15,自引:3,他引:12       下载免费PDF全文
Restriction analysis and cloning of virus-specific double-stranded DNA isolated from plants infected with wheat dwarf virus (WDV) indicated that the virus genome, like that of maize streak virus (MSV), consists of a single DNA circle. The complete nucleotide sequence of cloned WDV DNA (2749 nucleotides) has been determined. Comparison of the potential coding regions in WDV DNA with those in the DNA of two strains of MSV suggests that these viruses encode at least two functional proteins, the coat protein read in the virion (+) DNA sense and a composite protein, formed from two open reading regions, in the complementary (-) DNA sense. Although WDV and MSV are serologically unrelated their coat proteins showed 35% direct amino acid sequence and their DNAs showed 46% nucleotide sequence homology. There was too little homology between the DNAs of WDV and those of two geminiviruses with bipartite genomes, cassava latent virus (CLV) and tomato golden mosaic virus (TGMV), to align the sequences. However comparison of the amino acid sequences of predicted proteins of WDV, MSV, TGMV and CLV revealed clear relationships between these viruses and suggested that the monopartite and the bipartite geminiviruses have a common ancestral origin. Four inverted repeat sequences which have the potential to form hairpin structures of deltaG >/= -14 kcal/mol were detected in WDV DNA. The sequence TAATATTAC present in the loop of one of these hairpins is conserved in similar putative structures in MSV DNA and in both DNA components of CLV and TGMV and may function as a recognition sequence for a protein involved in virus DNA replication.  相似文献   

15.
16.
Sequence repeats constituting the telomeric regions of chromosomes are known to adopt a variety of unusual structures, consisting of a G tetraplex stem and short stretches of thymines or thymines and adenines forming loops over the stem. Detailed model building and molecular mechanics studies have been carried out for these telomeric sequences to elucidate different types of loop orientations and possible conformations of thymines in the loop. The model building studies indicate that a minimum of two thymines have to be interspersed between guanine stretches to form folded-back structures with loops across adjacent strands in a G tetraplex (both over the small as well as large groove), while the minimum number of thymines required to build a loop across the diagonal strands in a G tetraplex is three. For two repeat sequences, these hairpins, resulting from different types of folding, can dimerize in three distinct ways—i.e., with loops across adjacent strands and on same side, with loops across adjacent strands and on opposite sides, and with loops across diagonal strands and on opposite sides—to form hairpin dimer structures. Energy minimization studies indicate that all possible hairpin dimers have very similar total energy values, though different structures are stabilized by different types of interactions. When the two loops are on the same side, in the hairpin dimer structures of d(G4TnG4), the thymines form favorably stacked tetrads in the loop region and there is interloop hydrogen bonding involving two hydrogen bonds for each thymine–thymine pair. Our molecular mechanics calculations on various folded-back as well as parallel tetraplex structures of these telomeric sequences provide a theoretical rationale for the experimentally observed feature that the presence of intervening thymine stretches stabilizes folded-back structures, while isolated stretches of guanines adopt a parallel tetraplex structure. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
18.
Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ−/− cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes.  相似文献   

19.
20.
Cytotoxic T-lymphocyte (CTL) responses to Epstein-Barr virus (EBV) tend to focus on a few immunodominant viral epitopes; where these epitope sequences are polymorphic between EBV strains, host CTL specificities should reflect the identity of the resident strain. In studying responses in HLA-B27-positive virus carriers, we identified 2 of 15 individuals who had strong CTL memory to the pan-B27 epitope RRIYDLIEL (RRIY) from nuclear antigen EBNA3C but whose endogenous EBV strain, isolated in vitro, encoded a variant sequence RKIYDLIEL (RKIY) which did not form stable complexes with B27 molecules and which was poorly recognized by RRIY-specific CTLs. To check if such individuals were also carrying an epitope-positive strain (either related to or distinct from the in vitro isolate), we screened DNA from freshly isolated peripheral blood mononuclear cells for amplifiable virus sequences across the EBNA3C epitope, across a different region of EBNA3C with type 1-type 2 sequence divergence, and across a polymorphic region of EBNA1. This showed that one of the unexplained RRIY responders carried two distinct type 1 strains, one with an RKIY and one with an RRIY epitope sequence. The other responder carried an RKIY-positive type 1 strain and a type 2 virus whose epitope sequence of RRIFDLIEL was antigenically cross-reactive with RRIY. Of 15 EBV-seropositive donors analyzed by such assays, 12 appeared to be carrying a single virus strain, one was coinfected with distinct type 1 strains, and two were carrying both type 1 and type 2 viruses. This implies that a small but significant percentage of healthy virus carriers harbor multiple, perhaps sequentially acquired, EBV strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号