首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
PE_PGRS proteins localize in the mycobacterial cell wall and the cell wall localization of PE_PGRS33 has been shown to be attributed to its PE domain. In this study, we expressed deletion mutants of PE_PGRS30 in Mycobacterium smegmatis to characterize the role of its domains in protein localization. It was revealed that, apart from the PE domain, the C-terminal domain present in few PE_PGRS proteins carries individual cell wall localization signals. Proteinase K sensitivity assay showed that PE_PGRS30 is exposed on the mycobacterial surface through its PGRS domain. PGRS domain was also shown to be responsible for polar localization of PE_PGRS30.  相似文献   

2.
PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
The role and function of PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) remains elusive. In this study for the first time, Mtb isogenic mutants missing selected PE_PGRSs were used to investigate their role in the pathogenesis of tuberculosis (TB). We demonstrate that the MtbΔPE_PGRS30 mutant was impaired in its ability to colonize lung tissue and to cause tissue damage, specifically during the chronic steps of infection. Inactivation of PE_PGRS30 resulted in an attenuated phenotype in murine and human macrophages due to the inability of the Mtb mutant to inhibit phagosome–lysosome fusion. Using a series of functional deletion mutants of PE_PGRS30 to complement MtbΔPE_PGRS30, we show that the unique C‐terminal domain of the protein is not required for the full virulence. Interestingly, when Mycobacterium smegmatis recombinant strain expressing PE_PGRS30 was used to infect macrophages or mice in vivo, we observed enhanced cytotoxicity and cell death, and this effect was dependent upon the PGRS domain of the protein.Taken together these results indicate that PE_PGRS30 is necessary for the full virulence of Mtb and sufficient to induce cell death in host cells by the otherwise non‐pathogenic species M. smegmatis, clearly demonstrating that PE_PGRS30 is an Mtb virulence factor.  相似文献   

3.
李武  邓磊  阎紫菲  艾雪峰  吕茜  谢建平 《微生物学报》2023,63(12):4644-4658
【目的】研究结核分枝杆菌PE_PGRS15的功能。【方法】构建过表达PE_PGRS15蛋白的重组耻垢分枝菌酸杆形菌,通过细胞分级分离实验检测其细胞定位。通过涂布实验、扫描电镜和透射电镜观察细菌菌落形态、细菌表面形态及细胞包膜(cell envelope)结构。通过杀菌曲线法及微量肉汤稀释法检测重组菌对环境压力及抗生素的耐受性。通过染料摄取实验检测重组菌细胞壁通透性,并用气相色谱-质谱联用仪检测重组菌细胞壁脂肪酸谱。通过蛋白截短及融合实验分析PE_PGRS15蛋白结构域的功能。【结果】PE_PGRS15蛋白定位于重组菌细胞壁,其表达影响重组菌菌落形态和细胞包膜结构,增强重组菌对环境压力和抗生素的耐受。PE_PGRS15的表达导致重组菌细胞包膜脂肪酸含量增加,也降低了重组菌的细胞壁通透性。PE_PGRS15蛋白的PE结构域负责将该蛋白转运到细胞表面,而PGRS结构域介导重组菌对压力条件和抗生素的耐受。【结论】PE_PGRS15蛋白可能通过调控耻垢分枝菌酸杆形菌细胞包膜的结构进而影响细菌菌落形态、细胞壁通透性及耐药性,为解析PE/PPE家族蛋白的功能奠定了一定的基础。  相似文献   

4.
PE are peculiar exported mycobacterial proteins over-represented in pathogenic mycobacterial species. They are characterized by an N-terminal domain of about 110 amino acids (PE domain) which has been demonstrated to be responsible for their export and localization. In this paper, we characterize the PE domain of PE_PGRS33 (PE(Rv1818c)), one of the best characterized PE proteins. We constructed several mutated proteins in which portions of the PE domain were deleted or subjected to defined mutations. These proteins were expressed in different mycobacterial species and their localization was characterized. We confirmed that the PE domain is essential for PE_PGRS33 surface localization, and demonstrated that a PE domain lacking its first 30 amino acids loses its function. However, single amino acid substitutions in two regions extremely well conserved within the N-terminal domain of all PE proteins had some effect on the stability of PE_PGRS33, but not on its localization. Using Mycobacterium marinum we could show that the type VII secretion system ESX-5 is essential for PE_PGRS33 export. Moreover, in M. marinum, but not in Mycobacterium bovis BCG and in Mycobacterium tuberculosis, the PE domain of PE_PGRS33 is processed and secreted into the culture medium when expressed in the absence of the PGRS domain. Finally, using chimeric proteins in which different portions of the PE(Rv1818c) domain were fused to the N-terminus of the green fluorescent protein, we could hypothesize that the first 30 amino acids of the PE domain contain a sequence that allows protein translocation.  相似文献   

5.
Identification of the novel PE multigene family was an unexpected finding of the genomic sequencing of Mycobacterium tuberculosis. Presently, the biological role of the PE and PE_PGRS proteins encoded by this unique family of mycobacterial genes remains unknown. In this report, a representative PE_PGRS gene (Rv1818c/PE_PGRS33) was selected to investigate the role of these proteins. Cell fractionation studies and fluorescence analysis of recombinant strains of Mycobacterium smegmatis and M. tuberculosis expressing green fluorescent protein (GFP)-tagged proteins indicated that the Rv1818c gene product localized in the mycobacterial cell wall, mostly at the bacterial cell poles, where it is exposed to the extracellular milieu. Further analysis of this PE_PGRS protein showed that the PE domain is necessary for subcellular localization. In addition, the PGRS domain, but not PE, affects bacterial shape and colony morphology when Rv1818c is overexpressed in M. smegmatis and M. tuberculosis. Taken together, the results indicate that PE_PGRS and PE proteins can be associated with the mycobacterial cell wall and influence cellular structure as well as the formation of mycobacterial colonies. Regulated expression of PE genes could have implications for the survival and pathogenesis of mycobacteria within the human host and in other environmental niches.  相似文献   

6.
Mycobacterium tuberculosis, the leading causative agent of tuberculosis, remains one of the most deadly infectious pathogens. PE_PGRS proteins become a new focus as their species specificity in mycobacteria, especially in pathogenic mycobacteria. Despite intensive research, PE_PGRS proteins are still a mysterious aspect of mycobacterial pathogenesis with unknown mechanism. Herein, we focused on a PE_PGRS member from M. tuberculosis, PE_PGRS62, characterized by a surface-exposed protein function in disrupting phagolysosome maturation. Expression of PE_PGRS62 in Mycobacterium smegmatis, a nonpathogenic species naturally deficient in PE_PGRS genes, resulted in enhanced resistance to various in vitro stresses and cellular survival in macrophage. As a consequence, the cytokine profiles of macrophage were disturbed and cell apoptosis were inhibited via decreasing endoplasmic reticulum stress response.  相似文献   

7.
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio‐synthetical target for anti‐tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin‐9 and exacerbates mycobacterial infection. Administration of AG‐specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb‐infected mice or Mycobacterium marinum‐infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin‐9 with high affinity, and galectin‐9 associates with transforming growth factor β‐activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal‐regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin‐9 or inhibition of MMPs blocks AG‐induced pathological impairments in the lung, and the AG‐galectin‐9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin‐9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.  相似文献   

8.
9.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

10.
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z′ factors were > 0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli.  相似文献   

11.
Recently, several reports showed that about 80 % of mid-log phase Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG cells divide symmetrically with 5–10 % deviation in the septum position from the median. However, the mode of cell division of the pathogenic mycobacterial species, Mycobacterium tuberculosis, remained unclear. Therefore, in the present study, using electron microscopy, fluorescence microscopy of septum- and nucleoid-stained live and fixed cells, and live cell time-lapse imaging, we show the occurrence of asymmetric cell division with unusually deviated septum/constriction in 20 % of the 15 % septating M. tuberculosis cells in the mid-log phase population. The remaining 80 % of the 15 % septating cells divided symmetrically but with 2–5 % deviation in the septum/constriction position, as reported for M. smegmatis, M. marinum, and M. bovis BCG cells. Both the long and the short portions of the asymmetrically dividing M. tuberculosis cells with unusually deviated septum contained nucleoids, thereby generating viable short and long cells from each asymmetric division. M. tuberculosis short cells were acid fast positive and, like the long cells, further readily underwent growth and division to generate micro-colony, thereby showing that they were neither mini cells, spores nor dormant forms of mycobacteria. The freshly diagnosed pulmonary tuberculosis patients’ sputum samples, which are known for the prevalence of oxidative stress conditions, also contained short cells at the same proportion as that in the mid-log phase population. The probable physiological significance of the generation of the short cells through unusually deviated asymmetric cell division is discussed.  相似文献   

12.
Despite intense research, PE_PGRS proteins still represent an intriguing aspect of mycobacterial pathogenesis. These cell surface proteins influence virulence in several pathogenic species, but their diverse and exact functions remain unclear. Herein, we focussed on a PE_PGRS member from Mycobacterium marinum, MMAR_0242, characterized by an extended and unique C‐terminal domain. We demonstrate that an M. marinum mutant carrying a transposon insertion in MMAR_0242 is highly impaired in its ability to replicate in macrophages and amoebae, because of its inability to inhibit lysosomal fusion. As a consequence, this mutant failed to survive intracellularly as evidenced by a reduced number of cytosolic actin tail‐forming bacteria and by quantitative electron microscopy, which mainly localized MMAR_0242::Tn within membrane‐defined vacuoles. Functional complementation studies indicated that the C‐terminus, but not the N‐terminal PE_PGRS domain, is required for intracellular growth/survival. In line with these findings, disruption of MMAR_0242 resulted in a highly attenuated virulence phenotype in zebrafish embryos, characterized by restricted bacterial loads and a failure to produce granulomas. Furthermore, expression of MMAR_0242 in Mycobacterium smegmatis, a non‐pathogenic species naturally deficient in PE_PGRS production, resulted in increased survival in amoebae with enhanced cytotoxic cell death and increased survival in infected mice with splenomegaly. Overall, these results indicate that MMAR_0242 is required for full virulence of M. marinum and sufficient to confer pathogenic properties to M. smegmatis.  相似文献   

13.
Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles'' heel of the bacillus at all its growing stages.  相似文献   

14.
Liquid culture assays revealed a previously unreported capacity for Mycobacterium bovis BCG, M. gordonae, and M. marinum to oxidize CO and for M. smegmatis to consume molecular hydrogen. M. bovis BCG, M. gordonae, M. smegmatis, and M. tuberculosis H37Ra oxidized CO at environmentally relevant concentrations (<50 ppm); H2 oxidation by M. gordonae and M. smegmatis also occurred at environmentally relevant concentrations (<10 ppm). CO was not consumed by M. avium or M. microti, although the latter appeared to possess CO dehydrogenase (CODH) genes based on PCR results with primers designed for the CODH large subunit, coxL. M. smegmatis and M. gordonae oxidized CO under suboxic (10 and 1% atmospheric oxygen) and anoxic conditions in the presence of nitrate; no oxidation occurred under anoxic conditions without nitrate. Similar results were obtained for H2 oxidation by M. smegmatis. Phylogenetic analyses of coxL PCR products indicated that mycobacterial sequences form a subclade distinct from that of other bacterial coxL, with limited differentiation among fast- and slow-growing strains.  相似文献   

15.
Mycobacteria are shaped by a thick envelope made of an array of uniquely structured lipids and polysaccharides. However, the spatial organization of these molecules remains unclear. Here, we show that exposure to an esterase from Mycobacterium smegmatis (Msmeg_1529), hydrolyzing the ester linkage of trehalose dimycolate in vitro, triggers rapid and efficient lysis of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium marinum. Exposure to the esterase immediately releases free mycolic acids, while concomitantly depleting trehalose mycolates. Moreover, lysis could be competitively inhibited by an excess of purified trehalose dimycolate and was abolished by a S124A mutation affecting the catalytic activity of the esterase. These findings are consistent with an indispensable structural role of trehalose mycolates in the architectural design of the exposed surface of the mycobacterial envelope. Importantly, we also demonstrate that the esterase-mediated rapid lysis of M. tuberculosis significantly improves its detection in paucibacillary samples.  相似文献   

16.
The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å.  相似文献   

17.
Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world’s most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed.  相似文献   

18.
19.
Pulmonary infection by Mycobacterium tuberculosis (Mtb) involves the invasion of alveolar epithelial cells (AECs). We used Mitotracker Red® to assess changes in mitochondrial morphology/distribution and mass from 6 to 48 h post infection (hpi) by confocal microscopy and flow cytometry in Mtb-infected A549 type II AECs. During early infection there was no effect on mitochondrial morphology, however, by 48 hpi mitochondria appeared fragmented and concentrated around the nucleus. In flow cytometry experiments, the median fluorescence intensity (MFI) decreased by 44% at 48 hpi; double-labelling using antibodies to the integral membrane protein COXIV revealed that these changes were due to a decrease in mitochondrial mass. These changes did not occur with the apathogenic strain, Mycobacterium bovis BCG. ESAT-6 is a virulence factor present in Mtb Erdman but lacking in M. bovis BCG. We performed similar experiments using Mtb Erdman, an ESAT-6 deletion mutant and its complement. MFI decreased at 48 hpi in the parent and complemented strains versus uninfected controls by 52% and 36% respectively; no decrease was detected in the deletion mutant. These results indicate an involvement of ESAT-6 in the perturbation of mitochondria induced by virulent Mtb in AECs and suggest mitophagy may play a role in the infection process.  相似文献   

20.
Tuberculosis (TB) is caused by Mycobacterium tuberculosis. TB is highly prevalent, characterized by the constant occurrence of drug-resistant cases, and confounded by the incidence of respiratory disease caused by non-tuberculous mycobacteria (NTB). Expanding the spectrum of drugs for the treatment of TB is indispensable. Loperamide, an antidiarrhoeal drug, enhances immune-driven antimycobacterial activity, and we aimed to evaluate its bactericidal activity against M. tuberculosis, Mycobacterium bovis BCG, Mycobacterium terrae and Mycobacterium smegmatis. Loperamide exhibited an inhibitory effect against all mycobacterial species tested, with MICs of 100 and 150 μg ml−1. Thus, loperamide is a mycobactericidal drug with potential as adjunctive therapy for TB and NTB infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号