首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Instructions for authors   总被引:2,自引:0,他引:2  
Although Helicobacter pylori infects 50% of the total human population, only a small fraction of the infected people suffer from severe diseases like peptic ulcers and gastric adenocarcinoma. H. pylori strains, host genotypes and environmental factors play important role in deciding the extent and severity of the gastroduodenal diseases. The bacteria has developed a unique set of virulence factors to survive in the extreme ecological niche of human stomach. Together these virulence factors make H. pylori one of the most successful human pathogenic bacteria colonizing more than half of the human population. Understanding the mechanism of action of the major H. pylori virulence factors will shed light into the molecular basis of its pathogenicity.  相似文献   

2.
Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection.  相似文献   

3.
Informative and tractable animal models that are colonized by well-defined microbial pathogens represent ideal systems for the study of complex human diseases. Helicobacter pylori colonization of the stomach is a strong risk factor for peptic ulceration and distal gastric cancer. However, gastritis has no adverse consequences for most hosts and emerging evidence suggests that H. pylori prevalence is inversely related to gastroesophageal reflux disease and allergic disorders. These observations indicate that eradication may not be appropriate for certain populations due to the potentially beneficial effects conferred by persistent gastric inflammation. Animal models have provided an invaluable resource with which to study H. pylori pathogenesis and carcinogenesis, and have permitted the development of a focused approach to selectively target human populations at high-risk of disease.Helicobacter pylori is a bacterium that colonizes gastric epithelium and represents the most common bacterial infection worldwide (Peek and Blaser, 2002). H. pylori has colonized human stomachs for over 58,000 years (Linz et al., 2007), and virtually all persons infected by this organism develop co-existing gastritis, a signature feature of which is the capacity to persist for decades. Owing to its co-evolution with humans, H. pylori can send and receive signals from gastric epithelium, allowing host and bacteria to participate in a dynamic equilibrium. However, there are biological costs to these long-term relationships.Epidemiological studies in humans and experimental infections using a variety of animal models have clearly demonstrated that sustained interactions between H. pylori and its host significantly increase the risk for peptic ulcer disease, distal gastric adenocarcinoma, and non-Hodgkin’s lymphoma of the stomach (Peek and Blaser, 2002). Eradication of H. pylori significantly decreases the risk of developing peptic ulceration or gastric adenocarcinoma in infected individuals without pre-malignant lesions (Wong et al., 2004), providing evidence that this organism influences early stages in gastric carcinogenesis. However, only a fraction of colonized persons ever develop ulcers or neoplasia, and disease risk involves well-choreographed interactions between pathogen and host, which, in turn, are dependent upon strain-specific bacterial factors and/or host characteristics.  相似文献   

4.
The development of new nucleotide sequencing techniques and advanced bioinformatics tools has opened the field for studying the diversity and complexity of the gastrointestinal microbiome independent of traditional cultural methods. Owing largely to the gastric acid barrier, the human stomach was long thought to be sterile. The discovery of Helicobacter pylori, the gram‐negative bacterium that infects upwards of 50% of the global population, has started a major paradigm shift in our understanding of the stomach as an ecologic niche for bacteria. Recent sequencing analysis of gastric microbiota showed that H. pylori was not alone and the interaction of H. pylori with those microorganisms might play a part in H. pylori‐associated diseases such as gastric cancer. In this review, we summarize the available literature about the changes of gastrointestinal microbiota after H. pylori infection in humans and animal models, and discuss the possible underlying mechanisms including the alterations of the gastric environment, the secretion of hormones and the degree of inflammatory response. In general, information regarding the composition and function of gastrointestinal microbiome is still in its infancy, future studies are needed to elucidate whether and to what extent H. pylori infection perturbs the established microbiota. It is assumed that clarifying the role of gastrointestinal communities in H. pylori‐associated diseases will provide an opportunity for translational application as a biomarker for the risk of serious H. pylori diseases and perhaps identify specific organisms for therapeutic eradication.  相似文献   

5.
In accordance with the solution of IARC, the Helicobacter pylori (H. pylori) refers to carcinogens of the first group. As the carcinogenic factors have a mutagen effect, we have undertaken the cytogenetic testing of 62 patients with chronic nonatrophic gastritis (40 of which have H. pylori-associated gastritis) by account of the micronuclei in mucocytes of tectorial-pit epithelium of the mucous membrane of the antral region of the stomach. The detection of H. pylori cells in the mucous membrane of the stomach (SMM) was performed with the help of immunocytochemical method that permitted us to visualize both the bacillar and coccoid forms, as well as to evaluate the degree of sowing of SMM with the coccoid forms of H. pylori. In the patient group with H. pylori-associated gastritis, the frequency rate of mucocytes with micronuclei in SMM appears to be considerably higher than in the group of patients whose SMM was not infected with H. pylori (P < 0,05). A high scale of sowing with the coccoid forms of H. pylori was accompanied by a significantly heightened level of mucocytes with micronuclei in the SMM. In connection with this and on the basis of modern notions of carcinogenesis, based on mutagen modifications in somatic cells, patients that exhibit high sowing with coccoid forms of H. pylori may be placed in the group of heightened oncologic hazards.  相似文献   

6.
Helicobacter pylori (H. pylori), a gram‐negative microaerophilic bacterial pathogen that colonizes the stomachs of more than half of all humans, is linked to chronic gastritis, peptic ulcers and gastric cancer. Spiral‐shaped H. pylori undergo morphologic conversion to a viable but not culturable coccoid form when they transit from the microaerobic stomach into the anaerobic intestinal tract. However, little is known about the morphological and pathogenic characteristics of H. pylori under prolonged anaerobic conditions. In this study, scanning electron microscopy was used to document anaerobiosis‐induced morphological changes of H. pylori, from helical to coccoid to a newly defined fragmented form. Western blot analysis indicated that all three forms express certain pathogenic proteins, including the bacterial cytotoxin‐associated gene A (CagA), components of the cag‐Type IV secretion system (TFSS), the blood group antigen‐binding adhesin BabA, and UreA (an apoenzyme of urease), almost equally. Similar urease activities were also detected in all three forms of H. pylori. However, in contrast to the helical form, bacterial motility and TFSS activity were found to have been abrogated in the anaerobiosis‐induced coccoid and fragmented forms of H. pylori. Notably, it was demonstrated that some of the anaerobiosis‐induced fragmented state cells could be converted to proliferation‐competent helical bacteria in vitro. These results indicate that prolonged exposure to the anaerobic intestine may not eliminate the potential for H. pylori to revert to the helical pathogenic state.
  相似文献   

7.
In the Krebs cycle of Helicobacter pylori, the absence of alpha-ketoglutarate dehydrogenase and succinyl CoA synthetase are shown. Instead, alpha-ketoglutarate is converted to succinyl CoA and succinate by alpha-ketoglutarate oxidoreductase (KOR) and CoA transferase (CoAT). In the present study, when H. pylori transformed to the coccoid form, a viable but non-culturable form of H. pylori with reduced metabolic activity, the KOR activity was enhanced while the CoAT activity was reduced. Direct inactivation of KOR could potently kill the bacteria without allowing conversion to the coccoid form, suggesting a novel treatment strategy for the eradication of H. pylori, especially in cases infected with multiple antibiotic-resistant strains.  相似文献   

8.
The discovery of a bacterium, Helicobacter pylori, that is resident in the human stomach and causes chronic disease (peptic ulcer and gastric cancer) was radical on many levels. Whereas the mouth and the colon were both known to host a large number of microorganisms, collectively referred to as the microbiome, the stomach was thought to be a virtual Sahara desert for microbes because of its high acidity. We now know that H. pylori is one of many species of bacteria that live in the stomach, although H. pylori seems to dominate this community. H. pylori does not behave as a classical bacterial pathogen: disease is not solely mediated by production of toxins, although certain H. pylori genes, including those that encode exotoxins, increase the risk of disease development. Instead, disease seems to result from a complex interaction between the bacterium, the host, and the environment. Furthermore, H. pylori was the first bacterium observed to behave as a carcinogen. The innate and adaptive immune defenses of the host, combined with factors in the environment of the stomach, apparently drive a continuously high rate of genomic variation in H. pylori. Studies of this genetic diversity in strains isolated from various locations across the globe show that H. pylori has coevolved with humans throughout our history. This long association has given rise not only to disease, but also to possible protective effects, particularly with respect to diseases of the esophagus. Given this complex relationship with human health, eradication of H. pylori in nonsymptomatic individuals may not be the best course of action. The story of H. pylori teaches us to look more deeply at our resident microbiome and the complexity of its interactions, both in this complex population and within our own tissues, to gain a better understanding of health and disease.Common wisdom circa 1980 suggested that the stomach, with its low pH, was a sterile environment. Then, endoscopy of the stomach became common and, in 1984, pathologist Robin Warren and gastroenterologist Barry Marshall saw an extracellular, curved bacillus, often in dense sheets, lining the stomach epithelium of patients with gastritis (inflammation of the stomach) and ulcer disease [1]. Soon, the medical community understood that the gram-negative bacterium Helicobacter pylori, not stress, is the major cause of stomach inflammation, which, in some infected individuals, precedes peptic ulcer disease (10%–20%), distal gastric adenocarcinoma (1%–2%), and gastric mucosal-associated lymphoid tissue (MALT) lymphoma (<1%) [2][5]. Thus, H. pylori gained distinction as the only known bacterial carcinogen [6]. It is believed that half of the world''s population is infected with H. pylori; however, the burden of disease falls disproportionately on less-developed countries. The incidence of infection in developed countries has fallen dramatically, for unknown reasons, with a corresponding decrease in gastric cancer [7]. This public health success is tempered by the recent demonstration of an inverse relationship between H. pylori infection and esophageal adenocarcinoma, Barrett''s esophagus, and reflux esophagitis [8]. H. pylori has been with humans since our earliest days, thus it is not surprising that its relationship is that of both a commensal bacterium and a pathogen, causing some diseases and possibly protecting against others. In addition, it is genetically diverse, likely as a result of constant exposure to both environmental and immunological selection, suggesting that genetic diversification is a strategy for long-term colonization.  相似文献   

9.
Helicobacter pylori (H. pylori) can convert to coccoid form in unfavorable conditions or as a result of antibiotic treatment. In order to adapt to harsh environments, H. pylori requires a stringent response which, encoded by the spoT gene, has a bifunctional enzyme possessing both (p)ppGpp synthetic and degrading activity. Our goal in this study was to compare spoT gene expression in spiral and induced coccoid forms of H. pylori with use of amoxicillin. First, clinical isolate coccoid forms were induced with amoxicillin; then, the viability test was analyzed by flow cytometer. After RNA extraction, cDNA synthesis and designing a specific primer for spoT gene, evaluation of the desired gene expression in both forms were studied. Bacterial isolates exposed to amoxicillin at MIC and 1/2 MIC induced morphological conversion better and faster than other MIC concentration. The expression of spoT gene was significantly downregulated in spiral forms of H. pylori, while the gene expression was upregulated and + 30.3-fold changes was seen in coccoid forms of bacterium. To summarize, spoT gene is one of the key factors for antibiotic resistance and its enhanced expression in coccoid form can be a valuable diagnostic marker for recognition of H. pylori during morphological conversion.  相似文献   

10.
The human gastric pathogen Helicobacter pylori causes chronic gastritis, peptic ulcer disease, gastric carcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. It infects over 50% of the worlds' population, however, only a small subset of infected people experience H. pylori-associated illnesses. Associations with disease-specific factors remain enigmatic years after the genome sequences were deciphered. Infection with strains of Helicobacter pylori that carry the cytotoxin-associated antigen A (cagA) gene is associated with gastric carcinoma. Recent studies revealed mechanisms through which the cagA protein triggers oncopathogenic activities. Other candidate genes such as some members of the so-called plasticity region cluster are also implicated to be associated with carcinoma of stomach. Study of the evolution of polymorphisms and sequence variation in H. pylori populations on a global basis has provided a window into the history of human population migration and co-evolution of this pathogen with its host. Possible symbiotic relationships were debated since the discovery of this pathogen. The debate has been further intensified as some studies have posed the possibility that H. pylori infection may be beneficial in some humans. This assumption is based on increased incidence of gastro-oesophageal reflux disease (GERD), Barrett's oesophagus and adenocarcinoma of the oesophagus following H. pylori eradication in some countries. The contribution of comparative genomics to our understanding of the genome organisation and diversity of H. pylori and its pathophysiological importance to human healthcare is exemplified in this review.  相似文献   

11.
Functional characterization of Helicobacter pylori DnaB helicase   总被引:1,自引:1,他引:0  
Helicobacter pylori causes gastric ulcer diseases and gastric adenocarcinoma in humans. Not much is known regarding DNA replication in H.pylori that is important for cell survival. Here we report the cloning, expression and characterization of H.pylori DnaB (HpDnaB) helicase both in vitro and in vivo. Among the DnaB homologs, only Escherichia coli DnaB has been studied extensively. HpDnaB showed strong 5′ to 3′ helicase and ATPase activity. Interestingly, H.pylori does not have an obvious DnaC homolog which is essential for DnaB loading on the E.coli chromosomal DNA replication origin (oriC). However, HpDnaB can functionally complement the E.coli DnaB temperature-sensitive mutant at the non-permissive temperature, confirming that HpDnaB is a true replicative helicase. Escherichia coli DnaC co-eluted in the same fraction with HpDnaB following gel filtration analysis suggesting that these proteins might physically interact with each other. It is possible that a functional DnaC homolog is present in H.pylori. The complete characterization of H.pylori DnaB helicase will also help the comparative analysis of DnaB helicases among bacteria.  相似文献   

12.
Helicobacter pylori exists in two morphologic forms: spiral shaped and coccoid. The nonculturable coccoid forms were believed to be the morphologic manifestations of cell death for a long time. However, recent studies indicate the viability of such forms. This form of H. pylori is now suspected to play a role in the transmission of the bacteria and is partly responsible for relapse of infection after antimicrobial treatment. Urease activity of H. pylori is an important maintenance factor. Determination of urease activity and possible mutations in the DNA sequences of coccoid bacteria will hence contribute to the understanding of pathogenesis of infections, which these forms might be responsible for. In this study, our aim was to analyze the urease activity and investigate the urease gene sequences of coccoid H. pylori forms induced by different factors with respect to the spiral form. For this purpose, the urease activities of H. pylori NCTC 11637 standard strain and two clinical isolates were examined before and after transformation of the cells to coccoid forms by different methods such as exposure to amoxicillin, aerobiosis, cold starvation, and aging. The effects of these conditions on the urease gene were examined by the amplification of 411-bp ureA gene and 115-bp ureB gene regions by PCR technique and sequencing of the ureA gene. The urease activities of coccoid cells were found to be lower than those of the spiral form. ureA and ureB gene regions were amplified in all coccoid cells by PCR. Inducing the change to coccoid form by different methods was found to have no effect on the nucleotide sequence of the ureA gene. These results show that the urease gene region of coccoid H. pylori is highly protected under various mild environmental conditions.  相似文献   

13.
Helicobacter pylori (H. Pylori) is an actively dividing spiral bacterium that changes to coccoid morphology under stressful environments. The infectivity of the coccoids is still controversial. The aim of this study was to determine the viability and expression of two important virulence genes (babA and cagE), in antibiotic-induced coccoid forms. Three strains of H. pylori, the standard 26695 and two clinical isolates (p1, p2) were converted to coccoid form by amoxicillin. Coccoids were identified according to Gram-staining and microscopic morphology. The viability of the cells was analyzed by flow cytometry. The expression of cagE and babA in coccoid forms were evaluated and compared to the spirals by quantitative PCR assay. The coccoid forms were developed after 72 h exposure of H. pylori to ½ MIC of amoxicillin, and the conversion form was completed (100 %) at 144 h in all of three isolates. Flow cytometry analyses showed that the majority of the induced coccoids (90–99.9 %) were viable. Expression of cagE and babA was seen in coccoids; however, in lower rate (cagE, ~3-fold and babA, ~10-fold) than these in spiral forms. Coccoid forms of two clinical isolates significantly expressed higher rate of cagE and babA than standard 26695 strain (P = 0.01). These results suggest that the induced coccoid form of H. pylori is not a passive entity but can actively infect the human by expression of the virulence genes for long time in stomach and probably play a role in chronic and severe disease.  相似文献   

14.
Helicobacter pylori is a gram-negative pathogen that colonizes the stomachs of over half the world's population and causes a spectrum of gastric diseases including gastritis, ulcers, and gastric carcinoma. The H. pylori species exhibits unusually high levels of genetic variation between strains. Here we announce the complete genome sequence of H. pylori strain G27, which has been used extensively in H. pylori research.  相似文献   

15.
The human stomach is naturally colonized by Helicobacter pylori, which, when present, dominates the gastric bacterial community. In this study, we aimed to characterize the structure of the bacterial community in the stomach of patients of differing H. pylori status. We used a high-density 16S rRNA gene microarray (PhyloChip, Affymetrix, Inc.) to hybridize 16S rRNA gene amplicons from gastric biopsy DNA of 10 rural Amerindian patients from Amazonas, Venezuela, and of two immigrants to the United States (from South Asia and Africa, respectively). H. pylori status was determined by PCR amplification of H. pylori glmM from gastric biopsy samples. Of the 12 patients, 8 (6 of the 10 Amerindians and the 2 non-Amerindians) were H. pylori glmM positive. Regardless of H. pylori status, the PhyloChip detected Helicobacteriaceae DNA in all patients, although with lower relative abundance in patients who were glmM negative. The G2-chip taxonomy analysis of PhyloChip data indicated the presence of 44 bacterial phyla (of which 16 are unclassified by the Taxonomic Outline of the Bacteria and Archaea taxonomy) in a highly uneven community dominated by only four phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Positive H. pylori status was associated with increased relative abundance of non-Helicobacter bacteria from the Proteobacteria, Spirochetes and Acidobacteria, and with decreased abundance of Actinobacteria, Bacteroidetes and Firmicutes. The PhyloChip detected richness of low abundance phyla, and showed marked differences in the structure of the gastric bacterial community according to H. pylori status.  相似文献   

16.
Stomach cancer is one of the leading causes of cancer death worldwide, despite its incidence and mortality falling in many places. The discovery in 1984 that a bacterial infection with Helicobacter pylori could cause stomach and duodenal ulcers prompted work in its role in causing gastritis, and led to the first prospective study in 1991 by Forman et al., showing that infection with H.pylori increased the risk of stomach cancer in those infected by almost three-fold. Prior to then, it was hypothesized that stomach was caused by poor diets. While diets may still play a role, the falls in stomach cancer incidence have been associated with reductions in population prevalence of H. pylori. Discovery of the link was accelerated by the use of stored sera from other unrelated studies, and the use of serological assays.Since those discoveries the treatment landscape of gastric disorders has changed significantly, with a rapid uptake of antibiotic and proton pump inhibitors (triple) therapies in those who are H. pylori positive. Over time we have seen falls in gastric cancer, peptic and duodenal ulcers and in many of the procedures previously used to cure peptic ulcer disease, such as vagotomies and gastrectomies.Further still, an oral vaccine against H. pylori, first trialled in China, holds much promise of being the third vaccine against a cancer causing infection. If successful this would lead to a further reduction in H. pylori related conditions, and ultimately gastric cancer, an otherwise lethal disease.  相似文献   

17.
Helicobacter pylori is a Gram-negative bacterium that colonizes human stomach and causes gastric inflammation. The species is naturally competent and displays remarkable diversity. The presence of a large number of restriction–modification (R–M) systems in this bacterium creates a barrier against natural transformation by foreign DNA. Yet, mechanisms that protect incoming double-stranded DNA (dsDNA) from restriction enzymes are not well understood. A DNA-binding protein, DNA Processing Protein A (DprA) has been shown to facilitate natural transformation of several Gram-positive and Gram-negative bacteria by protecting incoming single-stranded DNA (ssDNA) and promoting RecA loading on it. However, in this study, we report that H. pylori DprA (HpDprA) binds not only ssDNA but also dsDNA thereby conferring protection to both from various exonucleases and Type II restriction enzymes. Here, we observed a stimulatory role of HpDprA in DNA methylation through physical interaction with methyltransferases. Thus, HpDprA displayed dual functional interaction with H. pylori R–M systems by not only inhibiting the restriction enzymes but also stimulating methyltransferases. These results indicate that HpDprA could be one of the factors that modulate the R–M barrier during inter-strain natural transformation in H. pylori.  相似文献   

18.
Helicobacter pylori (H. pylori) induces reactive oxygen species (ROS) production that contribute to pathogenesis of a variety of H. pylori-related gastric diseases, as shown in animal and human studies. Helicobacter pylori infection is also associated with variety of systemic extragastric diseases in which H. pylori-related ROS production might also be involved in the pathogenesis of these systemic conditions. We proposed that Hp-related ROS may play a crucial role in the pathophysiology of Hp-related systemic diseases including Alzheimer’s disease, multiple sclerosis, glaucoma and other relative neurodegenerative diseases, thereby suggesting introduction of relative ROS scavengers as therapeutic strategies against these diseases which are among the leading causes of disability and are associated with a large public health global burden. Moreover, we postulated that H. pylori-related ROS might also be involved in the pathogenesis of extragastric common malignancies, thereby suggesting that H. pylori eradication might inhibit the development or delay the progression of aforementioned diseases. However, large-scale future studies are warranted to elucidate the proposed pathophysiological mechanisms, including H. pylori-related ROS, involved in H. pylori-associated systemic and malignant conditions.  相似文献   

19.
Helicobacter Pylori is a gram negative rod shaped microaerophilic bacterium that colonizes the stomach of approximately half the world's population. Infection with c may cause chronic gastritis which via a quite well described process known as Correas cascade can progress through sequential development of atrophic gastritis, intestinal metaplasia and dysplasia to gastric cancer. H. pylori is currently the only bacterium that is classified as a class 1 carcinogen by the WHO, although the exact mechanisms by which this bacterium contributes to gastric carcinogenesis are still poorly understood. Only a minority of H. pylori-infected patients will eventually develop gastric cancer, suggesting that host factors may be important in determining the outcome of H. pylori infection. This is supported by a growing body of evidence suggesting that the host genetic background contributes to risk of H. pylori infection and gastric carcinogenesis. In particular single nucleotide polymorphisms in genes that influence bacterial handling via pattern recognition receptors appear to be involved, further strengthening the link between host risk factors, H. pylori incidence and cancer. Many of these genes influence cellular pathways leading to inflammatory signaling, inflammasome formation and autophagy. In this review we summarize known carcinogenic effects of H. pylori, and discuss recent findings that implicate host genetic pattern recognition pathways in the development of gastric cancer and their relation with H. pylori.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号