首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非病毒基因转移载体--壳聚糖被广泛用于基因转染,然而相对较低的转染效率限制了其在基因治疗中的应用.本课题组曾经报告可磷酸化短肽修饰壳聚糖(hosphorylatable short peptide coupled chitosan,pSP-CS)可增加体外培养细胞的DNA转染效率.本研究中采用pSP-CS作为基因载体介导人白细胞介素-1受体拮抗剂基因(interleukin-1 receptor antagonist gene, IL-1RA)和人胰岛素样生长因子-1基因(insulin-like growth factor 1 gene, IGF-1) 局部转染, 联合治疗兔关节软骨损伤.将pSP-CS与单基因表达质粒pBudCE4.1-IGF-1、pBudCE4.1-IL-1RA和共表达质粒pBudCE4.1-IGF-1+IL-1RA制成pSP-CS/pDNA复合物,制备股骨外侧髁全层软骨损伤模型,pSP-CS/pDNA 复合物关节腔内注射4周. ELISA分析发现,转基因组关节腔灌洗液中含有大量外源蛋白IGF-1和IL-1RA. 定量PCR检测mRNA显示, 各转基因组明显下调基质金属蛋白酶-3(matrix metallo-proteinase-3, Mmp-3)基因表达; 上调基质金属蛋白酶抑制剂-1(matrix metallo-proteinase inhibitor-1, Timp-1)和二型胶原(Collagen II) 基因表达(P < 0.05);双基因转染组作用明显优于单基因转染组(P< 0.05). HE及Collagen II免疫组化染色显示, 各转基因组软骨损伤处出现不同程度的软骨性修复,以双基因转染组作用最优. 本研究表明,pSP-CS可以携带外源基因进入软骨组织并局部大量表达,IGF-1与IL-1RA协同作用明显促进损伤软骨修复,为今后临床多基因治疗软骨损伤提供了实验基础.  相似文献   

2.
探讨可磷酸化短肽偶联壳聚糖(phosphorylatable short peptide coupled chitosan,pSP-CS),介导人白细胞介素 1受体拮抗剂基因(interleukin-1 receptor antagonist protein,IL-1RA)和人胰岛素样生长因子1基因(insulin like growth factor-1,IGF-1) 共转染,对体外培养的兔关节软骨细胞的作用. 将pSP-CS 与共表达质粒pBudCE4.1-IL-1RA+IGF-1、单基因表达质粒pBudCE4.1-IL-1RA、pBudCE4.1-IGF-1和空质粒pBudCE4.1制成pSP-CS/pDNA复合物,转染体外分离培养的正常兔原代关节软骨细胞. ELISA 法检测IL-1RA和IGF-1的表达,以表征pSP CS转染效率;Cell Counting Kit-8 (CCK-8) 法分析软骨细胞的增殖活力;流式细胞仪检测软骨细胞的凋亡;定量PCR检测软骨细胞中基质金属蛋白酶抑制剂-1(matrix metallo proteinase inhibitor-1, Timp-1)、基质金属蛋白酶-3(matrix metalloproteinase-3, Mmp-3)、聚集蛋白聚糖 (Aggrecan) 基因表达. 转基因组IL-1RA和IGF-1有较高的表达水平;各转基因组明显促进细胞增殖、抑制细胞凋亡、下调Mmp-3基因表达、上调Timp 1和Aggrecan基因表达,且双基因组作用明显优于单基因组(P<0.05). 结果表明,pSP-CS可以携带外源基因进入软骨细胞并大量表达, IGF-1与IL-1RA协同作用明显提高体外培养软骨细胞的生物活性, 为今后研究pSP-CS介导多基因体内治疗软骨损伤提供了基础.  相似文献   

3.
Interleukin (IL)-25, which is a member of the IL-17 family of cytokines, induces production of such Th2 cytokines as IL-4, IL-5, IL-9 and/or IL-13 by various types of cells, including Th2 cells, Th9 cells and group 2 innate lymphoid cells (ILC2). On the other hand, IL-25 can suppress Th1- and Th17-associated immune responses by enhancing Th2-type immune responses. Supporting this, IL-25 is known to suppress development of experimental autoimmune encephalitis, which is an IL-17-mediated autoimmune disease in mice. However, the role of IL-25 in development of IL-17-mediated arthritis is not fully understood. Therefore, we investigated this using IL-1 receptor antagonist-deficient (IL-1Ra-/-) mice, which spontaneously develop IL-17-dependent arthritis. However, development of spontaneous arthritis (incidence rate, disease severity, proliferation of synovial cells, infiltration of PMNs, and bone erosion in joints) and differentiation of Th17 cells in draining lymph nodes in IL-25-/- IL-1Ra-/- mice were similar to in control IL-25+/+ IL-1Ra-/- mice. These observations indicate that IL-25 does not exert any inhibitory and/or pathogenic effect on development of IL-17-mediated spontaneous arthritis in IL-1Ra-/- mice.  相似文献   

4.
Articular cartilage has a limited ability to self-repair because of its avascular nature and the low mitotic activity of the residing chondrocytes. There remains a significant need to develop therapeutic strategies to increase the regenerative capacity of cells that could repair cartilage. Multiple cell types, including chondrocytes and mesenchymal stem cells, have roles in articular cartilage regeneration. In this study, we evaluated a platform technology of multiple functionalized hexosamines, namely 3,4,6-O-tributanoylated-N-acetylgalactosamine (3,4,6-O-Bu3GalNAc), 3,4,6-O-tributanoylated-N-acetylmannosamine (3,4,6-O-Bu3ManNAc) and 3,4,6-O-Bu3GlcNAc, with the potential ability to reduce NFκB activity. Exposure of IL-1β-stimulated chondrocytes to the hexosamine analogs resulted in increased expression of ECM molecules and a corresponding improvement in cartilage-specific ECM accumulation. The greatest ECM accumulation was observed with 3,4,6-O-Bu3GalNAc. In contrast, mesenchymal stem cells (MSCs) exposed to 3,4,6-O-Bu3GalNAc exhibited a dose dependent decrease in chondrogenic differentation as indicated by decreased ECM accumulation. These studies established the disease modification potential of a hexosamine analog platform on IL-1β-stimulated chondrocytes. We determined that the modified hexosamine with the greatest potential for disease modification is 3,4,6-O-Bu3GalNAc. This effect was distinctly different with 3,4,6-O-Bu3GalNAc exposure to chondrogenic-induced MSCs, where a decrease in ECM accumulation and differentiation was observed. Furthermore, these studies suggest that NFκB pathway plays a complex role cartilage repair.  相似文献   

5.
In the present study we examined cartilage matrix repair following IL-1-induced matrix depletion. Previous data indicated that, in some cases, chondrocytes can synthesize macromolecules to establish a functional extracellular matrix in response to a matrix-damaging insult or when placed in a three-dimensional environment with inadequate matrix. However, the conditions under which such 'repair' can occur are not entirely clear. Prior studies have shown that chondrocytes in trypsin-depleted young bovine articular cartilage can replenish tissue glycosaminoglycan (GAG) and that the rate of replenishment is relatively uniform throughout the tissue, suggesting that all chondrocytes have similar capacity for repair. In the present study we used the characteristic heterogeneous distribution of matrix depletion in response to IL-1 exposure in order to investigate whether the severity of depletion influenced the rate of GAG replenishment. We used the delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) method to monitor the spatial and temporal evolution of tissue GAG concentration ([GAG]). For both mild (n=4) and moderate (n=10) IL-1-induced GAG depletion, we observed partial recovery of GAG (80% and 50% of baseline values, respectively) over a 3-week recovery period. During the first 2 weeks of recovery, [GAG] increased homogeneously at 10–15 mg/ml per week. However, during the third week the regions most severely depleted following IL-1 exposure showed negligible [GAG] accumulation, whereas those regions affected the least by IL-1 demonstrated the greatest accumulation. This finding could suggest that the most severely degraded regions do not recover fully, possibly because of more severe collagen damage; this possibility requires further examination.  相似文献   

6.

Background

Osteoarthritis (OA) is a chronic joints disease characterized by progressive degeneration of articular cartilage due to the loss of cartilage matrix. Previously, we found, for the first time, that an acidic glycan from Angelica Sinensis Polysaccharides (APSs), namely the APS-3c, could protect rat cartilage from OA due to promoting glycosaminoglycan (GAG) synthesis in chondrocytes. In the present work, we tried to further the understanding of ASP-3c’s anti-OA activity.

Methodology/Principal Findings

Human primary chondrocytes were treated with APS-3c or/and recombinant human interleukin 1β (IL-1β). It turned out that APS-3c promoted synthesis of UDP-xylose and GAG, as well as the gene expression of UDP-sugar synthases (USSs), insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R), and attenuated the degenerative phenotypes, suppressed biosynthesis of UDP-sugars and GAG, and inhibited the gene expression of USSs, IGF1 and IGF1R induced by IL-1β. Then, we induced a rat OA model with papain, and found that APS-3c also stimulated GAG synthesis and gene expression of USSs, IGF1 and IGF1R in vivo. Additionally, recombinant human IGF1 and IGF1R inhibitor NP-AEW541 were applied to figure out the correlation between stimulated gene expression of USSs, IGF1 and IGF1R induced by APS-3c. It tuned out that the promoted GAG synthesis and USSs gene expression induced by APS-3c was mediated by the stimulated IGF1 and IGF1R gene expression, but not through directly activation of IGF1R signaling pathway.

Conclusions/Significances

We demonstrated for the first time that APS-3c presented anti-OA activity through stimulating IGF-1 and IGF1R gene expression, but not directly activating the IGF1R signaling pathway, which consequently promoted UDP-sugars and GAG synthesis due to up-regulating gene expression of USSs. Our findings presented a better understanding of APS-3c’s anti-OA activity and suggested that APS-3c could potentially be a novel therapeutic agent for OA.  相似文献   

7.

Introduction

Deletion or mutation of the gene encoding the cartilage extracellular matrix (ECM) protein matrilin-3 (MATN3) results in the early onset of osteoarthritis (OA), suggesting chondroprotective properties of MATN3. To understand the mechanisms underlying these properties, we determined the effects of MATN3 protein on the expression of several key anabolic and catabolic genes involved in chondrocyte homeostasis, and the dependence of such regulation on the anti-inflammatory cytokine: IL-1 receptor antagonist (IL-1Ra).

Methods

The effects of recombinant human (rh) MATN3 protein were examined in C28/I2 immortalized human chondrocytes, primary human chondrocytes (PHCs), and primary mouse chondrocytes (PMCs). Messenger RNA levels of IL-1Ra, COL2A1, ACAN, MMP-13, and ADAMTS-4 and -5 were determined using real-time RT-PCR. Knocking down IL-1Ra was achieved by siRNA gene silencing. IL-1Ra protein levels were quantified by ELISA and the Bio-Plex Suspension Array System. COL2A1 protein level was quantified using Western blot analysis. Statistic analysis was done using the two-tailed t-test or one-way ANOVA.

Results

rhMATN3 protein induced gene expression of IL-1Ra in C28/I2 cells, PHCs, and PMCs in a dose- and time-dependent manner. Treatment of C28/I2 cells and PHCs with MATN3 protein stimulated gene expression of COL2A1 and ACAN. Conversely, mRNA levels of COL2A1 and ACAN were decreased in MATN3 KO mice. MATN3 protein treatment inhibited IL-1β-induced MMP-13, ADAMTS-4 and ADAMTS-5 in C28/I2 cells and PHCs. Knocking down IL-1Ra abolished the MATN3-mediated stimulation of COL2A1 and ACAN and inhibition of ADAMTS-5, but had no effect on MATN3 inhibition of MMP-13 mRNA.

Conclusion

Our findings point to a novel regulatory role of MATN3 in cartilage homeostasis due to its capacity to induce IL-1Ra, to upregulate gene expression of the major cartilage matrix components, and to downregulate the expression of OA-associated matrix-degrading proteinases in chondrocytes. The chondroprotective properties of endogenous MATN3 depend partly on its induction of IL-1Ra. Our findings raise a possibility to use rhMATN3 protein for anti-inflammatory and chondroprotective therapy.  相似文献   

8.
Cartilage defects resulting from traumatic injury or degenerative diseases have very limited spontaneous healing ability. Recent progress in tissue engineering and local therapeutic gene delivery systems has led to promising new strategies for successful regeneration of hyaline cartilage. In the present study, tissue engineering and local therapeutic gene delivery systems are combined with the design of a novel gene-activated matrix (GAM) embedded with hybrid hyaluronic acid(HA)/chitosan(CS)/plasmid-DNA nanoparticles encoding transforming growth factor (TGF)-β1. A chitosan scaffold functioned as the three-dimensional carrier for the nanoparticles. Results demonstrated that scaffold-entrapped plasmid DNA was released in a sustained and steady manner over 120 days, and was effectively protected in the HA/CS/pDNA nanoparticles. Culture results demonstrated that chondrocytes grown in the novel GAM were highly proliferative and capable of filling scaffold micropores with cells and extracellular matrix. Confocal laser scanning microscopy indicated that chondrocytes seeded in the GAM expressed exogenous transgenes labeled with green fluorescent protein. ELISA results demonstrated detectable TGF-β1 expression in the supernatant of GAM cultures, which peaked at the sixth day of culture and afterwards showed a moderate decline. Histological results and biochemical assays confirmed promotion of chondrocyte proliferation. Cell culture indicated no affects on phenotypic expression of ECM molecules, such as GAG. The results of this study indicate the suitability of this novel GAM for enhanced in vitro cartilage tissue engineering.  相似文献   

9.

Introduction

This study aimed to evaluate whether profiles of several soluble mediators in synovial fluid and cartilage tissue are pathology-dependent and how their production is related to in vitro tissue formation by chondrocytes from diseased and healthy tissue.

Methods

Samples were obtained from donors without joint pathology (n = 39), with focal defects (n = 65) and osteoarthritis (n = 61). A multiplex bead assay (Luminex) was performed measuring up to 21 cytokines: Interleukin (IL)-1α, IL-1β, IL-1RA, IL-4, IL-6, IL-6Rα, IL-7, IL-8, IL-10, IL-13, tumor necrosis factor (TNF)α, Interferon (IFN)γ, oncostatin M (OSM), leukemia inhibitory factor (LIF), adiponectin, leptin, monocyte chemotactic factor (MCP)1, RANTES, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), vascular growth factor (VEGF).

Results

In synovial fluid of patients with cartilage pathology, IL-6, IL-13, IFNγ and OSM levels were higher than in donors without joint pathology (P ≤0.001). IL-13, IFNγ and OSM were also different between donors with cartilage defects and OA (P <0.05). In cartilage tissue from debrided defects, VEGF was higher than in non-pathological or osteoarthritic joints (P ≤0.001). IL-1α, IL-6, TNFα and OSM concentrations (in ng/ml) were markedly higher in cartilage tissue than in synovial fluid (P <0.01). Culture of chondrocytes generally led to a massive induction of most cytokines (P <0.001). Although the release of inflammatory cytokines was also here dependent on the pathological condition (P <0.001) the actual profiles were different from tissue or synovial fluid and between non-expanded and expanded chondrocytes. Cartilage formation was lower by healthy unexpanded chondrocytes than by osteoarthritic or defect chondrocytes.

Conclusions

Several pro-inflammatory, pro-angiogenic and pro-repair cytokines were elevated in joints with symptomatic cartilage defects and/or osteoarthritis, although different cytokines were elevated in synovial fluid compared to tissue or cells. Hence a clear molecular profile was evident dependent on disease status of the joint, which however changed in composition depending on the biological sample analysed. These alterations did not affect in vitro tissue formation with these chondrocytes, as this was at least as effective or even better compared to healthy chondrocytes.  相似文献   

10.

Introduction

Our objective was to investigate whether a lack of frizzled-related protein B (FrzB), an extracellular antagonist of the Wnt signaling pathways, could enhance cartilage degradation by facilitating the expression, release and activation of matrix metalloproteinases (MMPs) by chondrocytes in response to tissue-damaging stimuli.

Methods

Cartilage explants from FrzB−/− and wild-type mice were challenged by excessive dynamic compression (0.5 Hz and 1 MPa for 6 hours). Load-induced glycosaminoglycan (GAG) release and MMP enzymatic activity were assessed. Interleukin-1β (IL-1β) (10, 100 and 1000 pg/mL for 24 hours) was used to stimulate primary cultures of articular chondrocytes from FrzB−/− and wild-type mice. The expression and release of MMP-3 and −13 were determined by RT-PCR, western blot and ELISA. The accumulation of β-catenin was assessed by RT-PCR and western blot.

Results

Cartilage degradation, as revealed by a significant increase in GAG release (2.8-fold, P = 0.014) and MMP activity (4.5-fold, P = 0.014) by explants, was induced by an excessive load. Load-induced MMP activity appeared to be enhanced in FrzB−/− cartilage explants compared to wild-type (P = 0.17). IL-1β dose-dependently induced Mmp-13 and −3 gene expression and protein release by cultured chondrocytes. IL-1β-mediated increase in MMP-13 and −3 was slightly enhanced in FrzB−/− chondrocytes compared to wild-type (P = 0.05 and P = 0.10 at gene level, P = 0.17 and P = 0.10 at protein level, respectively). Analysis of Ctnn1b and Lef1 gene expression and β-catenin accumulation at protein level suggests that the enhanced catabolic response of FrzB−/− chondrocytes to IL-1β and load may be associated with an over-stimulation of the canonical Wnt/β-catenin pathway.

Conclusions

Our results suggest that FrzB may have a protective role on cartilage degradation and MMP induction in mouse chondrocytes by attenuating deleterious effects of the activation of the canonical Wnt/β-catenin pathway.  相似文献   

11.
12.

Background

Implantation of the embryo and successful pregnancy are dependent on the differentiation of endometrial stromal cells into decidual cells. Female interleukin-11 receptor α (IL-11Rα) deficient mice are infertile due to disrupted decidualization, suggesting a critical role for IL-11 and its target genes in implantation. The molecular targets of IL-11 in the uterus are unknown, but it is likely that IL-11 signaling modifies the expression of other genes important in decidualization. This study aimed to identify genes regulated by IL-11 during decidualization in mouse uterus, and to examine their expression and localization as an indication of functional significance during early pregnancy.

Methods

Decidualization was artificially induced in pseudopregnant wild type (IL11Ra+/+) and IL-11Rα deficient (IL11Ra-/-) littermates by oil injection into the uterine lumen, and gene expression analyzed by NIA 15K cDNA microarray analysis at subsequent time points. Quantitative real-time RT-PCR was used as an alternative mRNA quantitation method and the expression and cellular localization of the protein products was examined by immunohistochemistry.

Results

Among 15,247 DNA probes, 13 showed increased and 4 decreased expression in IL11Ra-/- uterus at 48 h of decidualization. These included 4 genes encoding extracellular matrix proteins; collagen III α1, secreted acidic cysteine-rich glycoprotein (SPARC), biglycan and nidogen-1 (entactin). Immunohistochemistry confirmed increased collagen III and biglycan protein expression in IL11Ra-/- uterus at this time. In both IL11Ra-/- and wild type uterus, collagen III and biglycan were primarily localized to the outer connective tissue and smooth muscle cells of the myometrium, with diffuse staining in the cytoplasm of decidualized stromal cells.

Conclusion

These data suggest that IL-11 regulates changes in the uterine extracellular matrix that are necessary for decidualization.
  相似文献   

13.
14.
Autologous chondrocyte implantation (ACI) is a promising strategy for cartilage repair and reconstitution. However, limited cell numbers and the dedifferentiation of chondrocytes present major difficulties to the success of ACI therapy. Therefore, it is important to find effective pro-chondrogenic agents that restore these defects to ensure a successful therapy. In this study, we synthesized a sulfonamido-based gallate, namely N-[4-(4,6-dimethyl-pyrimidin-2-ylsulfamoyl)-phenyl]-3,4,5-trihydroxy-benzamide (EJTC), and investigated its effects on rabbit articular chondrocytes through an examination of its specific effects on cell proliferation, morphology, viability, GAG synthesis, and cartilage-specific gene expression. The results show that EJTC can effectively promote chondrocyte growth and enhance the secretion and synthesis of cartilage ECM by upregulating the expression levels of the aggrecan, collagen II, and Sox9 genes. The expression of the collagen I gene was effectively downregulated, which indicates that EJTC inhibits chondrocytes dedifferentiation. Chondrocyte hypertrophy, which may lead to chondrocyte ossification, was also undetectable in the EJTC-treated groups. The recommended dose of EJTC ranges from 3.125 μg/mL to 7.8125 μg/mL, and the most profound response was observed with 7.8125 μg/mL. This study may provide a basis for the development of a novel agent for the treatment of articular cartilage defects.  相似文献   

15.
The long bones of the vertebrate body are built by the initial formation of a cartilage template that is later replaced by mineralized bone. The proliferation and maturation of the skeletal precursor cells (chondrocytes) within the cartilage template and their replacement by bone is a highly coordinated process which, if misregulated, can lead to a number of defects including dwarfism and other skeletal deformities. This is exemplified by the fact that abnormal bone development is one of the most common types of human birth defects. Yet, many of the factors that initiate and regulate chondrocyte maturation are not known. We identified a recessive dwarf mouse mutant (pug) from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. pug mutant skeletal elements are patterned normally during development, but display a ~20% length reduction compared to wild-type embryos. We show that the pug mutation does not lead to changes in chondrocyte proliferation but instead promotes premature maturation and early ossification, which ultimately leads to disproportionate dwarfism. Using sequence capture and high-throughput sequencing, we identified a missense mutation in the Xylosyltransferase 1 (Xylt1) gene in pug mutants. Xylosyltransferases catalyze the initial step in glycosaminoglycan (GAG) chain addition to proteoglycan core proteins, and these modifications are essential for normal proteoglycan function. We show that the pug mutation disrupts Xylt1 activity and subcellular localization, leading to a reduction in GAG chains in pug mutants. The pug mutant serves as a novel model for mammalian dwarfism and identifies a key role for proteoglycan modification in the initiation of chondrocyte maturation.  相似文献   

16.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

17.
Interleukin-1 (IL-1) plays an important role in cartilage destruction associated with inflammatory and degenerative arthritis because of its ability to induce matrix degrading enzymes. Previously, we have shown that the IL-1-induced chondrocyte protease activity was inhibited by transforming growth factor-β (TGF-β). In this paper, we show that TGF-β inhibits the IL-1-induced synthesis of collagenase and stromelysin by reducing the steady-state mRNA levels in rabbit articular chondrocytes. We further demonstrate that TGF-β-treated chondrocytes show reduced 125I-IL-1 binding that returns to a normal level when TGF-β is removed from the culture medium. The inhibitory effect of TGF-β is observed for both naturally occurring as well as fibroblast growth factor (FGF)-inducible binding sites (receptors). Scatchard analysis of receptor—ligand interactions demonstrate that the reduced binding is due to a reduction in the number of receptors for IL-1 and is not due to changes in affinity. Affinity cross-linking studies suggest that control chondrocytes contain two major cross-linked bands of Mr =116 and 80 kDa and a minor band of Mr =100 kDa. FGF-treated cells show enhanced levels of all the bands, plus an additional 200-kDa band. TGF-β treatment of chondrocytes results in the reduction of all of these bands in both control as well as FGF-induced cells. These observations suggest that the ability of TGF-β to down-regulate the IL-1 receptor may be a mechanism by which it exerts its effects in antagonizing the IL-1 activity on chondrocytes.  相似文献   

18.
Previous work from our laboratory has shown that rabbit articular chondrocytes, like macrophages, produce reactive oxygen intermediates, express Ia antigen, and can mediate immunologic functions such as antigen presentation and induction of mixed and autologous lymphocyte reactions. We were interested in seeing if these cells could secrete interleukin-1 (IL-1) or express membrane form of IL-1 (mIL-1). Using the standard C3H/HeJ thymocyte assay, neither secreted IL-1 nor mIL-1 activity was detected in untreated or LPS-treated chondrocytes. However, the D10.G4.1 proliferation assay showed that chondrocytes, stimulated with LPS, secrete IL-1 and express the mIL-1 in a dose- and time-dependent manner. The IL-1 activity in LPS-stimulated chondrocyte supernatant and on fixed cells could be inhibited by anti-IL-1 antibodies. Sephadex G-75 chromatography of pooled, concentrated LPS culture supernatant resolved into two peaks of IL-1 activity at 13-17 and at 45-70 kDa, respectively. The bioactivity of chromatographic fractions were similar using both the thymocyte and D10.G4.1 bioassays. Western blot analysis of chondrocyte supernatant detects 17-kDa IL-1 beta; no processed 17-kDa IL-1 alpha was seen but IL-1 alpha-specific reactivity was observed at 64 kDa. Immunoblot analysis of chondrocyte lysates shows that cell-associated IL-1 is IL-1 alpha and is 37 kDa in size. PCR analysis shows the presence of mRNA for IL-1 beta and IL-1 alpha in LPS-treated cells; IL-1 beta mRNA was detected in untreated chondrocytes. The inability to detect IL-1 by the thymocyte assay is due to the presence of a chondrocyte inhibitor of IL-1 that can be demonstrated in cell sonicates, supernatants, and on paraformaldehyde-fixed chondrocytes. Chromatography of LPS-stimulated supernatant showed a peak of IL-1 inhibitory activity at 21-45 kDa. Chondrocytes which secrete IL-1 and express mIL-1 could play a critical role in maintaining chronic inflammation in rheumatoid arthritis. Therefore, the ability of chondrocytes to produce both IL-1 and an inhibitor to IL-1 is important in interpreting the mechanism of cartilage matrix maintenance and degradation.  相似文献   

19.
NAC1 encoded by NACC1 is a member of the BTB/POZ family of proteins and participates in several pathobiological processes. However, its function during tissue development has not been elucidated. In this study, we compared homozygous null mutant Nacc1-/- and wild type Nacc1+/+ mice to determine the consequences of diminished NAC1 expression. The most remarkable change in Nacc1-/- mice was a vertebral patterning defect in which most knockout animals exhibited a morphological transformation of the sixth lumbar vertebra (L6) into a sacral identity; thus, the total number of pre-sacral vertebrae was decreased by one (to 25) in Nacc1-/- mice. Heterozygous Nacc1+/- mice had an increased tendency to adopt an intermediate phenotype in which L6 underwent partial sacralization. Nacc1-/- mice also exhibited non-closure of the dorsal aspects of thoracic vertebrae T10-T12. Chondrocytes from Nacc1+/+ mice expressed abundant NAC1 while Nacc1-/- chondrocytes had undetectable levels. Loss of NAC1 in Nacc1-/- mice was associated with significantly reduced chondrocyte migratory potential as well as decreased expression of matrilin-3 and matrilin-4, two cartilage-associated extracellular matrix proteins with roles in the development and homeostasis of cartilage and bone. These data suggest that NAC1 participates in the motility and differentiation of developing chondrocytes and cartilaginous tissues, and its expression is necessary to maintain normal axial patterning of murine skeleton.  相似文献   

20.
Articular cartilage defects are considered a major health problem because articular cartilage has a limited capacity for self-regeneration 1. Untreated cartilage lesions lead to ongoing pain, negatively affect the quality of life and predispose for osteoarthritis. During the last decades, several surgical techniques have been developed to treat such lesions. However, until now it was not possible to achieve a full repair in terms of covering the defect with hyaline articular cartilage or of providing satisfactory long-term recovery 2-4. Therefore, articular cartilage injuries remain a prime target for regenerative techniques such as Tissue Engineering. In contrast to other surgical techniques, which often lead to the formation of fibrous or fibrocartilaginous tissue, Tissue Engineering aims at fully restoring the complex structure and properties of the original articular cartilage by using the chondrogenic potential of transplanted cells. Recent developments opened up promising possibilities for regenerative cartilage therapies.The first cell based approach for the treatment of full-thickness cartilage or osteochondral lesions was performed in 1994 by Lars Peterson and Mats Brittberg who pioneered clinical autologous chondrocyte implantation (ACI) 5. Today, the technique is clinically well-established for the treatment of large hyaline cartilage defects of the knee, maintaining good clinical results even 10 to 20 years after implantation 6. In recent years, the implantation of autologous chondrocytes underwent a rapid progression. The use of an artificial three-dimensional collagen-matrix on which cells are subsequently replanted became more and more popular 7-9.MACT comprises of two surgical procedures: First, in order to collect chondrocytes, a cartilage biopsy needs to be performed from a non weight-bearing cartilage area of the knee joint. Then, chondrocytes are being extracted, purified and expanded to a sufficient cell number in vitro. Chondrocytes are then seeded onto a three-dimensional matrix and can subsequently be re-implanted. When preparing a tissue-engineered implant, proliferation rate and differentiation capacity are crucial for a successful tissue regeneration 10. The use of a three-dimensional matrix as a cell carrier is thought to support these cellular characteristics 11.The following protocol will summarize and demonstrate a technique for the isolation of chondrocytes from cartilage biopsies, their proliferation in vitro and their seeding onto a 3D-matrix (Chondro-Gide, Geistlich Biomaterials, Wollhusen, Switzerland). Finally, the implantation of the cell-matrix-constructs into artificially created chondral defects of a rabbit''s knee joint will be described. This technique can be used as an experimental setting for further experiments of cartilage repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号