首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned a two-component regulatory system (phoR2-phoP2) of Myxococcus xanthus while searching for genes that encode proteins with phosphatase activity, where phoR2 encodes the histidine kinase and phoP2 encodes the response regulator. A second system, phoR3-phoP3, was identified and isolated by using phoP2 as a probe. These two systems are quite similar, sharing identities along the full-length proteins of 52% on the histidine kinases and 64% on the response regulators. The predicted structures of both kinases suggest that they are anchored to the membrane, with the sensor domains being located in the periplasmic space and the kinase domains in the cytoplasm. The response regulators (PhoP2 and PhoP3) exhibit a helix-loop-helix motif typical of DNA-binding proteins in the effector domains located in the C-terminal region. Studies on two single-deletion mutants and one double-deletion mutant have revealed that these systems are involved in development. Mutant fruiting bodies are not well packed, originating loose and flat aggregates where some myxospores do not reshape properly, and they remain as elongated cells. These systems are also involved in the expression of Mg-independent acid and neutral phosphatases, which are expressed during development. The neutral phosphatase gene is especially dependent on PhoP3. Neither PhoP2 nor PhoP3 regulates the expression of alkaline phosphatases and the pph1 gene.  相似文献   

2.
3.
Perego M  Brannigan JA 《Peptides》2001,22(10):1541-1547
Aspartyl-phosphate phosphatases are integral components of the phosphorelay signal transduction system for sporulation initiation in Bacillus subtilis. The Rap and Spo0E families of protein phosphatases specifically dephosphorylate the sporulation response regulators Spo0F and Spo0A, respectively. The phosphatases interpret regulatory signals antithetical to sporulation and the Rap phosphatases are subject to inactivation by specific pentapeptides generated from an inactive peptide precursor. Additional regulatory signals are brought about by the complex activation circuit that generates the Phr pentapeptide inhibitors of Rap phosphatases. Phr peptide's recognition of the Rap phosphatase targets is remarkably specific. Specificity is dictated by the amino acid sequence of the pentapeptide. The identification of tetratricopeptide repeats in the Rap proteins may explain the mechanism by which Phr peptides bind to and inhibit the activity of Rap phosphatases.  相似文献   

4.
5.
6.
In the phosphorelay signal transduction system for sporulation initiation in Bacillus subtilis, the opposing activities of histidine kinases and aspartyl phosphate phosphatases determine the cell's decision whether to continue with vegetative growth or to initiate the differentiation process. Regulated dephosphorylation of the Spo0A and Spo0F response regulators allows a variety of negative signals from physiological processes that are antithetical to sporulation to impact on the activation level of the phosphorelay. Spo0F approximately P is the known target of two related phosphatases, RapA and RapB. In addition to RapA and RapB, a third member of the Rap family of phosphatases, RapE, specifically dephosphorylated the Spo0F approximately P intermediate in response to competence development. RapE phosphatase activity was found to be controlled by a pentapeptide (SRNVT) generated from within the carboxy-terminal domain of the phrE gene product. A synthetic PhrE pentapeptide could (i) complement the sporulation deficiency caused by deregulated RapE activity of a phrE mutant and (ii) inhibit RapE-dependent dephosphorylation of Spo0F approximately P in in vitro experiments. The PhrE pentapeptide did not inhibit the phosphatase activity of RapA and RapB. These results confirm previous conclusions that the specificity for recognition of the target phosphatase is contained within the amino acid sequence of the pentapeptide inhibitor.  相似文献   

7.
The participation of global regulators GrrS (sensor kinase GacA/GacS-like regulatory system) and sigma S subunit of RNA polymerase in the control of phosphatase synthesis in a soil bacterium Serratia plymuthica was shown. In cells of null mutants for genes grrS and rpoS synthesis of low-acidic and alkaline phosphatases was markedly decreased.  相似文献   

8.
9.
10.
Core LJ  Ishikawa S  Perego M 《Peptides》2001,22(10):1549-1553
In the Bacillus subtilis phosphorelay signal transduction system for sporulation initiation, signals competing with the differentiation process are interpreted by aspartyl-phosphate phosphatases that specifically dephosphorylate the Spo0F or Spo0A response regulators. The RapA phosphatase is regulated by the PhrA pentapeptide that directly and specifically inhibits its activity. PhrA specificity for RapA inhibition is dependent upon the amino acid sequence of the peptide. Here we show that the pentapeptide affinity for the phosphatase requires a free carboxylate group at the C-terminal amino acid. A free C-terminal carboxylic acid PhrA pentapeptide inhibits RapA phosphatase activity at a 1:1 ratio and it is approximately 200 fold more active than a C-terminal amide peptide. Therefore, coordination of the terminal carboxylate group appears to be critical for peptide binding to RapA.  相似文献   

11.
12.
Bacteria usually use two-component systems for signal transduction, while eukaryotic organisms employ Ser/Thr and Tyr kinases and phosphatases for the same purpose. Many prokaryotes turn out to harbor Ser/Thr and Tyr kinases, Ser/Thr and Tyr phosphatases, and their accessory components as well. The sequence determination of the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 offers the possibility to survey the extent of such molecules in a prokaryotic organism. This cyanobacterium possesses seven Ser/Thr kinases, seven Ser/Thr and Tyr phosphatases, one protein kinase interacting protein, one protein kinase regulatory subunit and several WD40-repeat-containing proteins. The majority of the protein phosphatases presented in this study were previously reported as hypothetical proteins. We analyze here the structure and genetic organization of these ORFs in the hope of providing a guidance for their functional analysis. Unlike their eukaryotic counterparts, many of these genes are clustered on the chromosome, and this genetic organization offers the opportunity to study their possible interaction. In several cases, genes of two-component transducers are found within the same cluster as those encoding a Ser/Thr kinase or a Ser/Thr phosphatase; the implication for signal transduction mechanism will be discussed.  相似文献   

13.
W Li  S Luan  S L Schreiber    S M Assmann 《Plant physiology》1994,106(3):963-970
Ion channels control ion fluxes across membranes, membrane potential, and signal transduction between and within cells. Protein kinases and phosphatases are important regulators involved in stimulus-response coupling in eukaryotic organisms. We have identified in extracts of Vicia faba leaf cells protein phosphatase activities inhibited by okadaic acid (OA) and calyculin A (CA), two inhibitors of protein phosphatases 1 and 2A. Using whole-cell patch-clamp techniques, we have demonstrated that inward K+ currents in guard cells are inhibited by nanomolar concentrations of OA or CA, whereas outward K+ currents are not affected. However, the same inhibitors enhance the magnitude of outward K+ currents in mesophyll cells. A phosphatase antagonist, adenosine-5'-O-(3-thiotriphosphate), has an effect similar to OA and CA on outward K+ currents in mesophyll cells. Our findings suggest that protein phosphatases 1 and/or 2A play different physiological roles in modulating the activity of K+ channels in mesophyll cells and guard cells.  相似文献   

14.
Lysobacter enzymogenes ATCC 29487 (UASM 495) produces an outer-membrane-associated phosphatase and an excreted phosphatase. The cell-associated enzyme was compared to phosphatases of nine other Gram-negative gliding bacteria and to that of Escherichia coli. The other three species of the genus Lysobacter also produce a particulate, cell-associated phosphatase. Antiserum prepared against the phosphatase from the outer membrane of L. enzymogenes effectively precipitated the phosphatases of two other L. enzymogenes strains and the enzymes of L. antibioticus, L. brunescens and L. gummosus. Some inhibition of the enzyme by the antiserum also was observed. No significant reaction could be detected between the antiserum and the cell-associated phosphatases of species of Cytophaga johnsonae, 'C. compacta', Myxococcus xanthus, E. coli and the excreted phosphatase of L. enzymogenes. The results indicate that the four species of the genus Lysobacter are closely related despite their physiological differences and that the outer-membrane-associated phosphatases of these organisms have different structural characteristics than the phosphatases of the other Gram-negative bacteria that were used. Furthermore, differences in the amino acid compositions of the cell-associated and the excreted phosphatase of L. enzymogenes confirm the immunological results and are in agreement with the physical and chemical differences noted between the two enzymes.  相似文献   

15.
Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi.  相似文献   

16.
Protein phosphatase M family (PPM; Mg2+-dependent protein phosphatases), which specifically dephosphorylates serine/threonine residues, consists of pyruvate dehydrogenase phosphatases, SpoIIE, adenylate cyclase and protein phosphatase type 2Cs (PP2Cs). To identify Candida albicans PP2Cs, the archetype of the PPM Ser/Thr phosphatases, we thoroughly searched the public C. albicans genome database and identified seven PP2C members. One of the PP2Cs in C. albicans, designated as CaPTC8 gene, represents a new member of PP2C genes. Northern blot analysis showed that the expression of CaPTC8 was positively responsive to high osmolarity, temperature or serum-stimulated filamentous growth. Gene disruption further demonstrated that deletion of CaPTC8 gene caused the defect of hyphal formation. Sequence analysis revealed that two conserved amino acids His and Asn in the prototypical members of the PPM family were substituted by Val and Asp in the PTC8p-like proteins. In addition, posterior analysis for site-specific profile showed that seven more sites are under the selection of functional divergence between these two groups of proteins. Three-dimensional homology modeling illustrated the signatures of the two groups in the conserved catalytic region of the protein phosphatases. Hence, CaPTC8 plays a role in stress responses and is required for the yeast-hyphal transition, and the CaPTC8-related genes are evolutionarily conserved. The phylogenetic relationships of all members of the PPM family strongly support the existence of a distinct and new subfamily of the PP2C-related proteins, PP2CR.  相似文献   

17.
18.
We have used the (nearly) completed eukaryotic genome sequences to trace the evolution of thirteen families of established vertebrate regulators of type-1 protein phosphatases (PP1). Two of these families are present in all lineages of the eukaryotic crown and therefore qualify as candidate primordial regulators that determined the surface of PP1. The set of regulators of PP1 has continued to expand ever since, often in response to functional innovations in different eukaryotic lineages. In particular, the development of metazoan multicellularity was accompanied by an explosive increase in the number of regulators of PP1. The further increase in the functional diversity of PP1 in the vertebrate lineage was mainly achieved by the duplication of genes for regulatory subunits and by the conversion of already existing proteins into regulators of PP1. Unexpectedly, our analysis has also enabled us to classify nine poorly characterized proteins as likely regulators of PP1.  相似文献   

19.
20.
spo0H encodes a sigma factor, sigma-H, of RNA polymerase that is required for sporulation in Bacillus subtilis. Null mutations in spo0H block the initiation of sporulation but have no obvious effect on vegetative growth. We have characterized an insertion mutation, csh203::Tn917lac, that makes spo0H essential for normal growth. In otherwise wild-type cells, the csh203::Tn917lac insertion mutation has no obvious effect on cell growth, viability, or sporulation. However, in combination with a mutation in spo0H, the csh203 mutation causes a defect in vegetative growth. The csh203::Tn917lac insertion mutation was found to be located within orf23, the first gene of the rpoD (sigma-A) operon. The transposon insertion separates the major vegetative promoters P1 and P2 from the coding regions of two essential genes, dnaG (encoding DNA primase) and rpoD (encoding the major sigma factor, sigma-A) and leaves these genes under the control of minor promoters, including P4, a promoter controlled by sigma-H. The chs203 insertion mutation caused a 2- to 10-fold increase in expression of promoters recognized by RNA polymerase containing sigma-H. The increased expression of genes controlled by sigma-H in the csh203 single mutant, as well as the growth defect of the csh203 spo0H double mutant, was due to effects on rpoD and not to a defect in orf23 or dnaG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号