首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermotropic phase behavior of monosialoganglioside in a dilute aqueous dispersion at pH 6.8 was measured by using synchrotron radiation small-angle x-ray scattering and was analyzed by a shell-modeling method. Previous calorimetric studies on ganglioside systems have shown quite different thermotropic behaviors from other biological lipid systems, however, the details have still been ambiguous. Because of high statistical data and a shell-modeling analysis, we could elucidate the internal structural change of monosialoganglioside micelle induced by the elevation of temperature from 6 to 60 degrees C, that is, the shrinkage of the hydrophilic region and the slight expansion of the hydrophobic region occurring simultaneously, accompanying the elongation of the axial ratios of the ellipsoidal micelles. The model structures obtained explain the changes in the experimental scattering curves, the distance distribution functions, and the gyration radii. In addition we have also found an evident thermal hysteresis in the scattering curves and in the structural parameters. The present result suggests that the thickness of the hydrophilic region, namely, the conformation of oligosaccharide chains, is sensitive to a change of temperature.  相似文献   

2.
Interactions between gangliosides and proteins at the exoplasmic surface of the sphingolipid-enriched membrane domains can be studied by ganglioside photolabeling combined with cell surface biotin labeling. In the present paper, we report on the results obtained using a novel radioactive photoactivable derivative of GM1 ganglioside, carrying the photoactivable nitrophenylazide group at the external galactose.After cell photolabeling with the radioactive photoactivable derivative of GM1 and cell surface biotin labeling, sphingolipid-enriched domains were prepared from rat cerebellar neurons differentiated in culture and further purified by immunoprecipitation with streptavidin-coupled beads. Among proteins belonging to the sphingolipid-enriched domains that were biotin labeled, thus bearing an exoplasmic domain, a few were also cross-linked by the radioactive photoactivable ganglioside. In particular, two protein bands showing apparent molecular mass of 135 and 35 kDa were intensely photolabeled. The 135 kDa protein was immunologically identified as the GPI-anchored neural cell adhesion molecule TAG-1. These data suggest that hydrophilic interaction between the exoplasmic domains of the protein and the ganglioside sialooligosaccharide chain could exist. Published in 2004.  相似文献   

3.
The topology of the interaction of cholera toxin with ganglioside and detergent micelles was studied with the technique of hydrophobic photolabelling. Cholera toxin α and γ polypeptide chains appear to penetrate into the hydrophobic core of ganglioside micelles. Micelles of SDS cause the labelling also of the β polypeptide chains, while Triton X-100 micelles have little ability to mediate the labelling of the toxin. The specific reduction of the α-γ disulfide bond allows the penetration of the α polypeptide chain into Triton X-100 micelles, but does not affect the interaction of cholera toxin with either ganglioside or SDS micelles. Thus, ganglioside micelles appear to cause a conformational change of the native toxin, such as to induce the penetration of the α chain into the micelle hydrophobic core.  相似文献   

4.
The action of Clostridium perfringens neuraminidase on the ganglioside Gm1 tritiated in the ceramide moiety was studied. The rates of hydrolysis of the Gm1 ganglioside were determined from radioactivity in the neutral glycolipid product, which was separated from the substrate on DEAE-Sephadex columns. In order to study the physical state of the substrate in the conditions used in the neuraminidase treatment, the critical micelle concentrations of the Gm1 ganglioside were determined using formation of the triiodide anion in aqueous iodine solution as an indicator. The critical micelle concentrations were also obtained by determining the non-sedimenting radioactivity at different concentrations of the labeled ganglioside per total volume used in ultracentrifugation experiments. In addition, the concentrations of the monomeric ganglioside were concluded from the results of the ultra-centrifugation studies. The increase in the reaction rate of the Gm1 hydrolysis as the function of the substrate concentration was leveled off at 25-28 microM ganglioside. The abrupt change at this concentration is interpreted as reflecting the monomer-micelle transition of the ganglioside in the conditions used (50mM sodium acetate buffer, pH 4.6). The critical micelle concentration was 29 microM on the basis of the triiodide test, and ultracentrifugation revealed the critical micelle concentration 28 microM. The reaction velocity of the hydrolysis was decreased immediately above the critical micelle concentration, and became constant at higher concentrations of the ganglioside. A close correlation to these changes in the reaction rate is suggested to exist in the concentrations of the monomeric Gm1 ganglioside. Saturation of the buffer used in the neuraminidase assays with butanol effected a striking change in the plot of reaction rate versus ganglioside concentration. The reaction rate increased up to 100-110 microM Gm1 ganglioside. The shift of the inflexion point in the rate plot from 25-28 microM to 100-110 microM ganglioside concentration is suggested to be due to a respective change in the critical micelle concentration effected by butanol. N-Acetylneuraminyllactosyl ceramide, lactosyl ceramide and asialo-Gm1 ganglioside had an inhibitory effect on the reaction. In contrast, N-acetylneuraminyllactose, lactose and some other free saccharides were not inhibitory. The results demonstrate that factors other than the saccharide structure must be taken into account when substrate specificity of a glycosidase is studied using competition experiments. It is suggested that the inhibition effected by the glycolipids is due to an increase in the micellar state of the Gm1 ganglioside.  相似文献   

5.
The energetics of phospholipid aggregation depend on the apparent water-accessible apolar surface area (ASAap), ordering effects of the chains, and headgroup interactions. We quantify the enthalpy and entropy of these interactions separately. For that purpose, the thermodynamics of micelle formation of lysophosphatidylcholines (LPCs, chains C10, C12, C14, and C16) and diacylphosphatidylcholines (DAPCs, chains C5, C6) and C7) are studied using isothermal titration calorimetry. The critical micelle concentration (CMC) values are 90, 15, and 1.9 mM (C5-C7-DAPC) and 6.8, 0.71, 0.045, and 0.005 mM (LPCs). The group contributions per methylene of DeltaDeltaG(0) = -3.1 kJ/mol and DeltaDeltaC(P) = -57 J/(mol. K) for LPCs agree with literature data on hydrocarbons and amphiphiles. An apparent deviation of DAPCs (-2.5 kJ/mol, 45 J/(mol. K)) is due to an intramolecular interaction between the two chains, burying 20% of the surface. The chain/chain interaction enthalpies in a micelle core are by approximately -2 kJ/(mol) per methylene group more favorable than in bulk hydrocarbons. We conclude that the impact of the chain conformation and packing on the interaction enthalpy is very pronounced. It serves to explain a variety of effects reported on membrane binding. Interactions within the water-accessible region show considerable DeltaH, but almost no DeltaG(0). The heat capacity changes suggest about three methylene groups (ASAap approximately 100 A2) per LPC remain exposed to water in a micelle (DAPC: 2 CH2/70 A2).  相似文献   

6.
Amyloid beta-peptide (Abeta) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. Here we demonstrate using NMR on 15N-labelled Abeta-(1-40) and Abeta-(1-42) that the interaction with ganglioside G(M1) micelles is localized to the N-terminal region of the peptide, particularly residues His13 to Leu17, which become more helical when bound. The key interaction is with His13, which undergoes a G(M1)-specific conformational change. The sialic acid residue of the ganglioside headgroup is important for determining the nature of the conformational change. The isolated pentasaccharide headgroup of G(M1) is not bound, suggesting the need for a polyanionic surface. Binding to heparin confirms this suggestion, since binding is of similar affinity but does not produce the same conformational changes in the peptide. A comparison of Abeta-(1-40) and Abeta-(1-42) indicates that binding to G(M1) micelles is not related to oligomerization, which occurs at the C-terminal end. These results imply that binding to ganglioside micelles causes a transition from random coil to alpha-helix in the N-terminal region, leaving the C-terminal region unstructured.  相似文献   

7.
Micellisation process for sodium dodecyl sulphate and sodium cholate in 1∶1 molar ratio was investigated in a combined approach, including several experimental methods and coarse grained molecular dynamics simulation. The critical micelle concentration (cmc) of mixed micelle was determined by spectrofluorimetric and surface tension measurements in the temperature range of 0–50°C and the values obtained agreed with each other within the statistical error of the measurements. In range of 0–25°C the cmc values obtained are temperature independent while cmc values were increased at higher temperature, which can be explained by the intensive motion of the monomers due to increased temperature. The evidence of existing synergistic effect among different constituent units of the micelle is indicated clearly by the interaction parameter (β1,2) calculated from cmc values according to Rubingh. As the results of the conductivity measurements showed the negative surface charges of the SDS-NaCA micelle are not neutralized by counterions. Applying a 10 µs long coarse-grained molecular dynamics simulation for system including 30-30 SDS and CA (with appropriate number of Na+ cations and water molecules) we obtained semi-quantitative agreement with the experimental results. Spontaneous aggregation of the surfactant molecules was obtained and the key steps of the micelle formation are identified: First a stable SDS core was formed and thereafter due to the entering CA molecules the size of the micelle increased and the SDS content decreased. In addition the size distribution and composition as well as the shape and structure of micelles are also discussed.  相似文献   

8.
To elucidate a relationship between the structural properties and hydration characteristic of gangliosides, time-resolved small-angle X-ray scattering measurements using synchrotron radiation have been performed on aqueous dispersions of various types of gangliosides (GM1, GD1a, GD1b and GM3) under a constant heating (5-65 degrees C) and cooling (65-5 degrees C) rate. In the case of GM3, they formed a vesicular aggregate with a high structural reversibility in the heating-and-cooling process. For the micelles of GM1, GD1a and GDlb, we found an evident thermal hysteresis in the structural changes of their headgroups and evaluated quantitatively the amounts of water molecules occluded in the micellar hydrophilic regions by using the shell modeling method reported previously. For all cases of GM1, GD1a and GD1b, the thickness of the hydrophilic region of the micelle shrunk after the heating process, and stayed mostly constant over the entire cooling range. On the other hand, the amounts of water molecules and the behavior of the GM1, GD1a and GD1b micelles in the heating-and-cooling process greatly depended on the number of sialic acid residues in the sugar chain, that is, the penetration of water molecules was much more reversible for the GM1 micelle compared with those for the GD1a and GD1b micelles. The observed clear hysteresis and the hydration characteristics of GD1 gangliosides would relate to their role in neuronal membranes, where GD1 gangliosides show the greatest concentrations.  相似文献   

9.
It has been shown that ganglioside micellae were able to reversible interaction with serotonin; the interaction is determined by their composition. Ganglioside and ganglioside-serotonin micellae were equal in sizes if pH, the ionic strength and the type of the buffer, the temperature and serotonin concentration were given. When the ganglioside micellae were saturated with serotonin the micallae became able to jumping reconstruction forming the structure able to bind more serotonin than the first one. As the serotonin concentration was increased CCM of mixed serotonin-ganglioside micellae was reached. It has been suggested that the reconstruction of the ganglioside micelle due to its interaction with serotonin can be considered as a model of a cooperative transfer of the postsynaptical membrane when a nervous impulse passes through a synapse.  相似文献   

10.
We and others have shown that infection of dendritic cells with murine cytomegalovirus (MCMV) leads to severe functional impairment of these antigen-presenting cells (D. M. Andrews, C. E. Andoniou, F. Granucci, P. Ricciardi-Castagnoli, and M. A. Degli-Esposti, Nat. Immunol. 2:1077-1084, 2001; S. Mathys, T. Schroeder, J. Ellwart, U. H. Koszinowski, M. Messerle, and U. Just, J. Infect. Dis. 187:988-999, 2003). Phenotypically, reduced surface expression of costimulatory molecules and major histocompatibility complex molecules was detected. In order to identify the molecular basis for the observed effects, we generated MCMV mutants with large deletions of nonessential genes. The study was facilitated by the finding that a monocyte-macrophage cell line displayed similar phenotypic alterations after MCMV infection. By analyzing the expression of cell surface molecules on infected cells, we identified a mutant virus which is no longer able to downmodulate the expression of the costimulatory molecule CD86. Additional mutants with smaller deletions allowed us to pin down the responsible gene to a certain genomic region. RNA analysis led to the identification of the spliced gene m147.5, encoding a protein with 145 amino acids. Experiments with an m147.5 mutant revealed that the protein affects CD86 expression only, suggesting that additional MCMV genes are responsible for downmodulation of the other surface molecules. Identification of viral gene products interfering with functionally important proteins of antigen-presenting cells will provide the basis to dissect the complex interaction of CMV with these important cells and to evaluate the biological importance of these viral genes in vivo.  相似文献   

11.
12.
Diverse cell-surface molecules of the nervous system play an important role in specifying cell interactions during development. Using a method designed to generate mAbs against neural surface molecules of defined molecular weight, we have previously reported on the surface protein, Bravo, found in the developing avian retinotectal system. Bravo is immunologically detected on developing optic fibers in the retina, but absent from distal regions of the same fibers in the tectum. We have isolated cDNA clones encompassing the entire coding region of Bravo, including clones containing five alternative sequences of cDNA. These putative alternatively spliced sequences encode stretches of polypeptide ranging in length from 10-93 amino acids and are predicted to be both extra- and intracellular. The deduced primary structure of Bravo reveals that, like the cell adhesion molecules (CAMs) chicken Ng-CAM and mouse L1, Bravo is composed of six Ig-like domains, five fibronectin type III repeats, a transmembrane domain, and a short cytoplasmic region. Recently, the cDNA sequence of a related molecule, Nr-CAM, was reported and its possible identity with Bravo discussed (Grumet, M., V. Mauro, M. P. Burgoon, G. E. Edelman, and B. A. Cunningham. 1991. J. Cell Biol. 113:1399-1412). Here we confirm this identity and moreover show that Bravo is found on Müller glial processes and end-feet in the developing retina. In contrast to the single polypeptide chain structure of Nr-CAM reported previously, we show that Bravo has a heterodimer structure composed of an alpha chain of M(r) 140/130 and a beta chain of 60-80 kD. As with L1 and Ng-CAM, the two chains of Bravo are generated from an intact polypeptide by cleavage at identical locations and conserved sites within all three molecules (Ser-Arg/Lys-Arg). The similar domain composition and heterodimer structure, as well as the 40% amino acid sequence identity of these molecules, defines them as an evolutionarily related subgroup of CAMs. The relationship of Bravo to molecules known to be involved in cell adhesion and process outgrowth, combined with its pattern of expression and numerous potential isoforms, suggests a complex role for this molecule in cell interactions during neural development.  相似文献   

13.
Synaptosomal membrane order has been studied by analysis of light depolarization by fluorescent dyes intercalated within membranes following exposure to various environmental toxicants. Two probes were explored: 1,6-diphenyl-1,3,5-hexatriene (DPH), signaling predominantly from the lipid-rich membrane core, and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), reporting from the more hydrophilic membrane surface. Chlordecone, a neurotoxic insecticide, decreased the anisotropy of either dye and this change could be prevented by prior treatment of synaptosomes with ganglioside GM1 but not alpha-tocopherol. Exposure to an iron-ascorbic acid oxidizing mixture enhanced synaptosomal membrane order and this effect was blocked by preincubation with alpha-tocopherol but not ganglioside GM1. While these interactions may have partially reflected additive anisotropy changes, the protective agents were also effective at concentrations where they did not in themselves modulate membrane order. Methyl mercuric chloride at concentrations up to 100 microM had no discernable effect upon membrane order. It is suggested that these changes in membrane order may underlie some of the previously reported variations in the content of ionic calcium and in the leakiness of synaptosomes.  相似文献   

14.
Mammalian spermatozoa acquire the ability to fertilize an oocyte as they ascend the female reproductive tract. This process is characterized by a complex cascade of biophysical and biochemical changes collectively know as "capacitation." The attainment of a capacitated state is accompanied by a dramatic reorganization of the surface architecture to render spermatozoa competent to recognize the oocyte and initiate fertilization. Emerging evidence indicates that this process is facilitated by molecular chaperone-mediated assembly of a multimeric receptor complex on the sperm surface. However, the mechanisms responsible for gathering key recognition molecules within this putative complex have yet to be defined. In this study, we provide the first evidence that chaperones partition into detergent resistant membrane fractions (DRMs) within capacitated mouse spermatozoa and co-localize in membrane microdomains enriched with the lipid raft marker, G(M1) ganglioside. During capacitation, these microdomains coalesce within the apical region of the sperm head, a location compatible with a role in sperm-zona pellucida interaction. Significantly, DRMs isolated from spermatozoa possessed the ability to selectively bind to the zona pellucida of unfertilized, but not fertilized, mouse oocytes. A comprehensive proteomic analysis of the DRM fractions identified a total of 100 proteins, a number of which have previously been implicated in sperm-oocyte interaction. Collectively, these data provide compelling evidence that mouse spermatozoa possess membrane microdomains that provide a platform for the assembly of key recognition molecules on the sperm surface and thus present an important mechanistic insight into the fundamental cell biological process of sperm-oocyte interaction.  相似文献   

15.
Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) 1H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36 Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.  相似文献   

16.
The incubation of cultured rat cerebellar granule cells with a photoreactive derivative of radiolabeled GM1 ganglioside, [3H]GM1(N3), followed by illumination, led to the specific association of ganglioside to cell proteins. After 30 min of incubation only a few out of the cell proteins became radiolabeled. Two of these, at apparent molecular weights of 95 and 112 kDa, are interacting with the portion of associated ganglioside that is released by trypsin treatment; others, in the region between 31 and 44 kDa, are probably bound to molecules of ganglioside inserted into the outer membrane layer, thus showing that the ganglioside association to the cell surface is a selective phenomenon, involving specific proteins. Increasing the incubation time up to 24 h resulted in a larger number of radiolabeled proteins, probably as a consequence of the internalization and metabolic processing of administered [3H]GM1(N3). In fact, photoreactive and radioactive metabolic derivatives of [3H]GM1(N3) can also interact with a number of proteins. After 24 h incubation, some radioactivity was also associated to cytosolic proteins. Again in this case the interaction with proteins seems to be a specific process involving only a few out of the total cytosolic proteins.  相似文献   

17.
The reflection coefficient, sigma, for several small permeant nonelectrolytes was determined for dog and beef red blood cell membranes. Our sigma values were considerably higher than those previously reported for dog cells; e.g., out sigma urea was 87% higher than the sigma urea of Rich, Sha'afi, Barton and Solomon (J. Gen. Physiol. 50: 2391, 1967). Our sigma values for urea were only slightly greater in beef cells than previously reported by Farmer and Macey (Biochim. Biophys. Acta 290: 290, 1972). We found that a trend exists when (1 - sigma) is plotted against the log of the permeability coefficient, omega. This observation is also consistent with our previously reported sigma data for human red cell membranes (Owen & Eyring, J. Gen. Physiol. 66: 241, 1972). This trend suggests that small hydrophilic molecules interact highly with cell membrane water. The exceptions to this trend were lipophilic molecules, indicating they do not interact with water while penetrating the red cell membrane.  相似文献   

18.
Gangliosides from beef brain have been spin-labeled using two different attaching groups and employed to investigate the physical nature of ganglioside behaviour in membranes. Results obtained using EPR spectroscopy indicate that, in phosphatidylcholine bilayers at physiological pH, ganglioside oligosaccharide chains are quite mobile and show a measurable tendency towards cooperative interaction amongst themselves. We suggest that the source of this interaction is the formation of H-bonds between sugar residues in adjacent ganglioside molecules. We present evidence that physiological (extracellular fluid) levels of Ca2+ and Mg2+ lead to cross-linking and condensing of ganglioside headgroups by complexing sialic acid carboxyl residues. Ganglioside headgroup interactions are not very sensitive to changes in the buffer ionic strength, suggesting that ionic interactions are of minor importance. We have found no measurable tendency for headgroup carbohydrate to penetrate hydrophobic regions of lipid bilayers. EPR spectroscopy was also used to follow the interaction of spin-labeled gangliosides with the glycoprotein, glycophorin, and with intact BHK cells. We suggest that these carbohydrate-based interactions should contribute significantly to the properties of the eucaryotic cell glycocalyx. We predict that laterally mobile carbohydrate-bearing components of cell surface will show a tendency to cluster about complex glycoprotein arrays, especially if the species involved bear accessible carboxylic acid functions.  相似文献   

19.
Rhodobacter sphaeroides (strain Y) reaction center (RC) crystals were grown in the presence of n-octyl beta-glucoside (beta-OG). In order to determine the structure of the detergent phase in these crystals, low-resolution neutron diffraction experiments were performed at different contrasts obtained by varying the H2O/D2O ratio in the solvent. From the contrast variation data and from the RC atomic coordinates determined by X-ray diffraction [Arnoux, B., Ducruix, A., Reiss-Husson, F., Lutz, M., Norris, J., Schiffer, M., & Chang, C. H. (1989) FEBS Lett. 258, 47-50], a model was obtained for the structure of the detergent phase in the crystal. The detergent forms a ring-shaped micelle surrounding the most hydrophobic part of the transmembrane alpha helices of the RC. Each detergent ring is connected to two next-neighbor rings by intermicellar bridges. The detergent phase is organized thus in infinite zigzag chains parallel to the b axis of the P2(1)2(1)2(1) unit cell. The main interactions between beta-OG molecules and the RC molecules are hydrophobic and are localized at the level of the transmembrane alpha helices. This interaction replaces the phospholipid-protein interaction existing in vivo in the membrane and, to some extent, also the light harvesting complex-protein interaction. Secondary hydrophilic interactions are found between a few of the charged residues of the H subunit and the hydrophilic surface of the detergent ring from a neighboring RC molecule. A comparison with a previous study on Rhodopseudomonas viridis crystals [which grow in the presence of lauryldimethylamine N-oxide (LDAO) and belong to a different space group] [Roth, M., Lewit-Bentley, A., Michel, H., Deisenhofer, J., Huber, R., & Oesterhelt, D. (1989) Nature 340, 659-661] shows a quasi identity of shape and position of the beta-OG and LDAO rings around the transmembrane alpha helices. The secondary interactions, involving in both cases the external surface of the H subunit, differ because of the different molecular packing in the two space groups. The role and structural requirements of the detergent in the crystallization process are discussed.  相似文献   

20.
Weller K  Lauber S  Lerch M  Renaud A  Merkle HP  Zerbe O 《Biochemistry》2005,44(48):15799-15811
Pep-1 is a tryptophane-rich cell-penetrating peptide (CPP) that has been previously proposed to bind protein cargoes by hydrophobic assembly and translocate them across cellular membranes. To date, however, the molecular mechanisms responsible for cargo binding and translocation have not been clearly identified. This study was conducted to gain insight into the interaction between Pep-1 with its cargo and the biological membrane to identify the thereby involved structural elements crucial for translocation. We studied three peptides differing in their N- and C-termini: (i) Pep-1, carrying an acetylated N-terminus and a C-terminal cysteamine elongation, (ii) AcPepWAmide, with an acetylated N-terminus and an amidated C-terminus, and (iii) PepW, with two free termini. Thioredoxin (TRX) and beta-galactosidase were used as protein cargoes. To study CPP-membrane interactions, we performed biophysical as well as biological assays. To mimic biological membranes, we used phospholipid liposomes in a dye leakage assay and surfactant micelles for high-resolution NMR studies. In addition, membrane integrity, cell viability, and translocation efficiency were analyzed in HeLa cells. An alpha-helical structure was found for all peptides in the hydrophobic N-terminal region encompassing residues 4-13, whereas the hydrophilic region remained unstructured in the presence of micelles. Our results show that the investigated peptides interacted with the micelles as well as with the protein cargo via their tryptophan-rich domain. All peptides displayed an orientation parallel to the micelle surface. The C-terminal cysteamine group formed an additional membrane anchor, leading to more efficient translocation properties in cells. No membrane permeabilization was observed, and our data were largely compatible with an endocytic pathway for cellular uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号