首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorate reductase has been isolated from the chlorate-respiring bacterium Ideonella dechloratans, and the genes encoding the enzyme have been sequenced. The enzyme is composed of three different subunits and contains molybdopterin, iron, probably in iron-sulfur clusters, and heme b. The genes (clr) encoding chlorate reductase are arranged as clrABDC, where clrA, clrB, and clrC encode the subunits and clrD encodes a specific chaperone. Judging from the subunit composition, cofactor content, and sequence comparisons, chlorate reductase belongs to class II of the dimethyl sulfoxide reductase family. The clr genes are preceded by a novel insertion sequence (transposase gene surrounded by inverted repeats), denoted ISIde1. Further upstream, we find the previously characterized gene for chlorite dismutase (cld), oriented in the opposite direction. Chlorate metabolism in I. dechloratans starts with the reduction of chlorate, which is followed by the decomposition of the resulting chlorite to chloride and molecular oxygen. The present work reveals that the genes encoding the enzymes catalyzing both these reactions are in close proximity.  相似文献   

2.
Pseudomonas sp. PDA is an unusual bacterium due to its ability to respire using chlorate under aerobic conditions. The chlorate reductase produced by PDA was shown to be intrinsically different from the enzyme responsible for chlorate and perchlorate [(per)chlorate] reduction produced by Azospira sp. KJ based on subunit composition and other enzyme properties. The perchlorate reductase from strain KJ appeared to have two subunits (100 and 40 kDa) while the chlorate reductase from PDA had three subunits (60, 48, and 27 kDa). N-terminal amino acid sequencing of the 100 kDa protein from strain KJ showed a 77% similarity with the perchlorate reductase alpha subunit from another perchlorate-respiring bacterium, Dechloromonas agitata, while the N-terminus amino acid sequence of the 60 kDa protein from strain PDA did not show a similarity to previously isolated chlorate or perchlorate reductases.  相似文献   

3.
A detailed comparison between native chlorite dismutase from Ideonella dechloratans, and the recombinant version of the protein produced in Escherichia coli, suggests the presence of a covalent modification in the native enzyme. Although the native and recombinant N- and C-terminal sequences are identical, the enzymes display different electrophoretic mobilities, and produce different peptide maps upon digestion with trypsin and separation of fragments using capillary electrophoresis. Comparison of MALDI mass spectra of tryptic peptides from the native and recombinant enzymes suggests two locations for modification in the native protein. Mass spectrometric analysis of isolated peptides from a tryptic digest of the native enzyme identifies a possible cross-linked dipeptide, suggesting an intrachain cross-link in the parent protein. Spectrophotometric titration of the native enzyme in the denatured state reveals two titrating components absorbing at 295 nm, suggesting the presence of about one tyrosine residue per subunit with an anomalously low pK(a). The EPR spectrum for the recombinant enzyme is different from that of the native enzyme, and contains a substantial contribution of a low-spin species with the characteristics of bis-histidine coordination. These results are discussed in terms of a covalent cross-link between a histidine and a tyrosine sidechain, similar to those found in other heme enzymes operating under highly oxidizing conditions.  相似文献   

4.
5.
The electron donor for periplasmic chlorate reductase of Ideonella dechloratans has been suggested to be a soluble cytochrome c. We describe here the purification of the 9-kDa periplasmic cytochrome c, denoted cytochrome c-Id1, and demonstrate its ability to serve as an electron donor for purified chlorate reductase. The reaction rate was found to be linearly dependent on the cytochrome c concentration in the range of 0.6-4 μM. A route for electron transport involving a soluble cytochrome c is similar to that found for other periplasmic oxidoreductases of the dimethyl sulfoxide reductase family, but different from that suggested for the (per)chlorate reductase of Dechloromonas species.  相似文献   

6.
Three genotypically different chlorate resistant mutants, chl I, chl II and chl III, appeared to lack completely nitrate reductase A, chlorate reductase C and tetrathionate reductase activity. Fumarate reductase is only partially affected in chl I and chl III and unaffected in chl II. Formate dehydrogenase is only partially diminished in chl II, hydrogenase is diminished in chl I and chl II and completely absent in chl III.Subunits of nitrate reductase A, chlorate reductase C and tetrathionate reductase have been identified in protein profiles of purified cytoplasmic membranes from the wild type and the three mutant strains, grown under various conditions. Only the presence and absence of the largest subunits of these enzymes appeared to be correlated with their repression and derepression in the wild type membranes. On the cytoplasmic membranes of the chl I and chl III mutants these subunits lack for the greater part. In the chl II mutant, however, these subunits are inserted in the membrane all together after anaerobic growth with or without nitrate.A model for the repression/derepression mechanism for the reductases has been proposed. It includes repression by cytochrome b components, whereas the redox-state of the nitrate reductase A molecule itself is also involved in its derepression under anaerobic conditions.  相似文献   

7.
The periplasmic dissimilatory nitrate reductase from Rhodobacter capsulatus N22DNAR+ has been purified. It comprises a single type of polypeptide chain with subunit molecular weight 90,000 and does not contain heme. Chlorate is not an alternative substrate. A molybdenum cofactor, of the pterin type found in both nitrate reductases and molybdoenzymes from various sources, is present in nitrate reductase from R. capsulatus at an approximate stoichiometry of 1 molecule per polypeptide chain. This is the first report of the occurrence of the cofactor in a periplasmic enzyme. Trimethylamine-N-oxide reductase activity was fractionated by ion exchange chromatography of periplasmic proteins. The fractionated material was active towards dimethylsulphoxide, chlorate and methionine sulphoxide, but not nitrate. A catalytic polypeptide of molecular weight 46,000 was identified by staining for trimethylamine-N-oxide reductase activity after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The same polypeptide also stained for dimethylsulphoxide reductase activity which indicates that trimethylamine-N-oxide and dimethylsulphoxide share a common reductase.Abbreviations DMSO dimethylsulphoxide - LDS lithium dodecyl sulphate - MVH reduced methylviologen - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate - TMAO trimethylamine-N-oxide  相似文献   

8.
9.
Abstract The wild-type strain Rhodobacter sphaeroides DSM 158 is a nitrate-reducing bacterium with a periplasmic nitrate reductase. Addition of chlorate to the culture medium causes a stimulation of the phototrophic growth, indicating that this strain is able to use chlorate as an ancillary oxidant. Several mutant strains of R. sphaeroides deficient in nitrate reductase activity were obtained by transposon Tn5 mutagenesis. Mutant strain NR45 exhibited high constitutive nitrate and chlorate reductase activities and phototrophic growth was also increased by the presence of chlorate. In contrast, the stimulation of growth by chlorate was not observed in mutant strains NR8 and NR13, in which transposon Tn5 insertion causes the simultaneous loss of both nitrate and chlorate reductase activities. Tn5 insertion probably does not affect molybdenum metabolism since NR8 and NR13 mutants exhibit both xanthine dehydrogenase and nitrogenase activities. These results that a single enzyme could reduce both nitrate and chlorate in R. sphaeroides DSM 158.  相似文献   

10.
Nitrate reductase A has been solubilized from purified cytoplasmic membranes by extraction with terl-amyl alcohol. The resulting aqueous solution contained monomeric reductase which polymerized slowly to dimers and tetramers with sedimentation coefficients of respectively 10.5, 16 and 23 Svedbergunits. The polymerization could be stopped to some extent by addition of a small amount of Triton X-100. These distinct entities of nitrate reductase A were separable on electro-focusing, DEAE-column chromatography and polyacrylamide gel electrophoresis, and have been proved to consist of similar subunits with molecular weights of 104000, 63000, and 56000 daltons. The molecular weights of monomeric nitrate reductase A was found to be about 240000 daltons.Chlorate reductase C has been solubilized by a similar procedure, resulting in only monomeric enzyme. Chlorate reductase C exhibited a sedimentation coefficient of 7.7 Svedbergunits, an isoelectric point of pH=4.55 and a molecular weight of approx. 180000 daltons. It was found to consist of three subunits with molecular weights of 75000, 63000 and 56000 daltons. The latter two subunits are most probably common in nitrate reductase A and chlorate reductase C.  相似文献   

11.
The dorC gene of the dimethyl sulfoxide respiratory (dor) operon of Rhodobacter capsulatus encodes a pentaheme c-type cytochrome that is involved in electron transfer from ubiquinol to periplasmic dimethyl sulfoxide reductase. DorC was expressed as a C-terminal fusion to an 8-amino acid FLAG epitope and was purified from detergent-solubilized membranes by ion exchange chromatography and immunoaffinity chromatography. The DorC protein had a subunit Mr = 46,000, and pyridine hemochrome analysis indicated that it contained 5 mol heme c/mol DorC polypeptide, as predicted from the derived amino acid sequence of the dorC gene. The reduced form of DorC exhibited visible absorption maxima at 551.5 nm (alpha-band), 522 nm (beta-band), and 419 nm (Soret band). Redox potentiometry of the heme centers of DorC identified five components (n = 1) with midpoint potentials of -34, -128, -184, -185, and -276 mV. Despite the low redox potentials of the heme centers, DorC was reduced by duroquinol and was oxidized by dimethyl sulfoxide reductase.  相似文献   

12.
Chlorite dismutase from Ideonella dechloratans   总被引:1,自引:0,他引:1  
Chlorite dismutase has been purified from the chlorate-metabolizing bacterium Ideonella dechloratans. The purified enzyme is tetrameric, with a relative molecular mass of 25,000 for the subunit, and contains about 0.6 heme/subunit as isolated. Its catalytic properties are similar, but not identical, to those found for a similar enzyme purified earlier from the bacterium GR-1. The heme group in Ideonella chlorite dismutase is readily reduced by dithionite, in contrast to the GR-1 enzyme, and redox titration gave a value of -21 mV for the midpoint potential at pH 7. The heme group has been characterized by optical and EPR spectroscopy. It is high-spin ferric at neutral pH, with spectroscopic properties similar to those found for cytochrome c peroxidase. In the alkaline pH range, a low-spin compound is formed. A 22-residue N-terminal amino acid sequence has been determined and no homologue has been found in the protein sequence databases.  相似文献   

13.
Plasmid DNA carrying either the nitrate reductase (NR) gene or the argininosuccinate lyase gene as selectable markers and the correspondingChlamydomonas reinhardtii mutants as recipient strains have been used to isolate regulatory mutants for nitrate assimilation by insertional mutagenesis. Identification of putative regulatory mutants was based on their chlorate sensitivity in the presence of ammonium. Among 8975 transformants, two mutants, N1 and T1, were obtained. Genetic characterization of these mutants indicated that they carry recessive mutations at two different loci, namedNrg1 andNrg2. The mutation in N1 was shown to be linked to the plasmid insertion. Two copies of the nitrate reductase plasmid, one of them truncated, were inserted in the N1 genome in inverse orientation. In addition to the chlorate sensitivity phenotype in the presence of ammonium, these mutants expressed NR, nitrite reductase and nitrate transport activities in ammonium-nitrate media. Kinetic constants for ammonium (14C-methylammonium) transport, as well as enzymatic activities related to the ammonium-regulated metabolic pathway for xanthine utilization, were not affected in these strains. The data strongly suggest thatNrg1 andNrg2 are regulatory genes which specifically mediate the negative control exerted by ammonium on the nitrate assimilation pathway inC. reinhardtii.  相似文献   

14.
In the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH), the genome sequencing revealed the presence of three operons encoding formate dehydrogenases. fdh1 encodes an alphabetagamma trimeric enzyme containing 11 heme binding sites; fdh2 corresponds to an alphabetagamma trimeric enzyme with a tetrahemic subunit; fdh3 encodes an alphabeta dimeric enzyme. In the present work, spectroscopic measurements demonstrated that the reduction of cytochrome c(553) was obtained in the presence of the trimeric FDH2 and not with the dimeric FDH3, suggesting that the tetrahemic subunit (FDH2C) is essential for the interaction with this physiological electron transfer partner. To further study the role of the tetrahemic subunit, the fdh2C gene was cloned and expressed in Desulfovibrio desulfuricans G201. The recombinant FDH2C was purified and characterized by optical and NMR spectroscopies. The heme redox potentials measured by electrochemistry were found to be identical in the whole enzyme and in the recombinant subunit, indicating a correct folding of the recombinant protein. The mapping of the interacting site by 2D heteronuclear NMR demonstrated a similar interaction of cytochrome c(553) with the native enzyme and the recombinant subunit. The presence of hemes c in the gamma subunit of formate dehydrogenases is specific of these anaerobic sulfate-reducing bacteria and replaces heme b subunit generally found in the enzymes involved in anaerobic metabolisms.  相似文献   

15.
Trimethylamine N-oxide (TMAO) reductase was purified from an aerobic photosynthetic bacterium Roseobacter denitrificans. The enzyme was purified from cell-free extract by ammonium sulfate fractionation, DEAE ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme was composed of two identical subunits with molecular weight of 90,000, as identified by SDS-polyacrylamide gel electrophoresis, containing heme c and a molybdenum cofactor. The molecular weight of the native enzyme determined by gel filtration was 172,000. The midpoint redox potential of heme c was +200 mV at pH 7.5. Absorption maxima appeared at 418,524, and 554 nm in the reduced state and 410 nm in the oxidized state. The enzyme reduced TMAO, nicotine acid N-oxide, picoline N-oxide, hydroxylamine, and bromate, but not dimethyl sulfoxide, methionine sulfoxide, chlorate, nitrate, or thiosulfate. Cytochrome c2 served as a direct electron donor. It probably catalyzes the electron transfer from cytochrome b-c1 complex to TMAO reductase. Cytochrome c552, another soluble low-molecular-weight cytochrome of this bacterium, also donated electrons directly to TMAO reductase.  相似文献   

16.
Assimilatory NADH:nitrate reductase (EC 1.6.6.1), a complex Mo-pterin-, cytochrome b(557)-, and FAD-containing protein, catalyzes the regulated and rate-limiting step in the utilization of inorganic nitrogen by higher plants. A codon-optimized gene has been synthesized for expression of the central cytochrome b(557)-containing fragment, corresponding to residues A542-E658, of spinach assimilatory nitrate reductase. While expression of the full-length synthetic gene in Escherichia coli did not result in significant heme domain production, expression of a Y647* truncated form resulted in substantial heme domain production as evidenced by the generation of "pink" cells. The histidine-tagged heme domain was purified to homogeneity using a combination of NTA-agarose and size-exclusion FPLC, resulting in a single protein band following SDS-PAGE analysis with a molecular mass of approximately 13 kDa. MALDI-TOF mass spectrometry yielded an m/z ratio of 12,435 and confirmed the presence of the heme prosthetic group (m/z=622) while cofactor analysis indicated a 1:1 heme to protein stoichiometry. The oxidized heme domain exhibited spectroscopic properties typical of a b-type cytochrome with a visible Soret maximum at 413 nm together with epr g-values of 2.98, 2.26, and 1.49, consistent with low-spin bis-histidyl coordination. Oxidation-reduction titrations of the heme domain indicated a standard midpoint potential (E(o)') of -118 mV. The isolated heme domain formed a 1:1 complex with cytochrome c with a K(A) of 7 microM (micro=0.007) and reconstituted NADH:cytochrome c reductase activity in the presence of a recombinant form of the spinach nitrate reductase flavin domain, yielding a k(cat) of 1.4 s(-1) and a K(m app) for cytochrome c of 9 microM. These results indicate the efficient expression of a recombinant form of the heme domain of spinach nitrate reductase that retained the spectroscopic and thermodynamic properties characteristic of the corresponding domain in the native spinach enzyme.  相似文献   

17.
Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1T grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1T also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 ± 0.1 and 0.4 ± 0.02 day−1, respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.  相似文献   

18.
Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260‐nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260‐nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260‐nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by 1H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe‐His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual 1H NMR technique. Chirality 28:585–592, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Summary Cell suspensions of diploid Arabidopsis thaliana were screened for resistance to chlorate on a medium with ammonium nitrate as the nitrogen source, and after plating on filters to increase the plating efficiency. Thirty-nine lines were selected, four of which were still resistant after two years of subculturing on non-selective medium. Of the latter lines three were nitrate reductase deficient but exhibited some residual nitrate reductase activity; the fourth line showed a high level of enzyme activity. Screening M2-seeds for callus production on selective medium with amino acids as the nitrogen source and chlorate revealed resistant calli in 17 out of 483 M2-groups. Nine well-growing lines, all but one (G3) exhibiting no detectable in vivo nitrate reductase activity, were classified as defective in the cofactor. Two lines (G1 and G3) could be analysed genetically at the plant level. Chlorate resistance was monogenic and recessive. Sucrose gradient fractionation of callus extracts of G1 revealed that a complete enzyme molecule can be assembled. Nitrate reductase activity in G1 could partly be restored by excess molybdenum. It is suggested that G1 is disturbed in the catalytic properties of the cofactor. It appeared that G1 is neither allelic with another molybdenum repairable mutant (B73) nor with another cofactor mutant (B25). Wilting of intact G1 plants could be ascribed to non-closing stomata.  相似文献   

20.
Cytochrome cd1 nitrite reductase has been purified from Pseudomonas stutzeri strain JM 300. This enzyme appears to be a dimer with a subunit molecular mass of 54 kDa and its isoelectric point is determined to be 5.4. The N terminus of amino acid sequence has strong homology with that of nitrite reductase from P. aeruginosa. The apoprotein of this enzyme has been reconstituted with native and synthetic heme d1. The nitrite reductase activity measured by NO and N2O gas evolution can be restored to 82% of the activity of the original enzyme when the protein was reconstituted with the native heme d1 and to 77% of the activity when reconstituted with the synthetic heme d1. The absorption spectra of both reconstituted enzymes are essentially identical to that of the original nitrite reductase. These results further substantiate the novel dione structure of heme d1 as proposed. The loss of NO2- reducing activity in the absence of heme d1 and its restoration by addition of heme d1 provides further evidence that heme d1 plays a key role in the conversion of NO2- to NO and N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号