首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The central aspect of this work was to investigate the influence of nitrogen feed rate at constant C/N ratio on continuous citric acid fermentation by Candida oleophila ATCC 20177. Medium ammonia nitrogen and glucose concentrations influenced growth and production. Space-time yield (STY) meaning volumetric productivity, biomass specific productivity (BSP), product concentration, product selectivity and citrate/isocitrate ratio increased with increasing residence time (RT). BSP increased in an exponential mode lowering nitrogen feed rates. Highest BSP for citric acid of 0.13 g/(g h) was achieved at lowest NH4Cl concentration of 1.5 g/l and highest STY (1.2 g/l h) with 3 g NH4Cl/l at a RT of 25 h. Citric acid 74.2 g/l were produced at 58 h RT and 6 g NH4Cl/l. Glucose uptake rate seems to be strictly controlled by growth rate of the yeast cells. Optimum nitrogen concentration and adapted C/N ratio are essential for successful continuous citric acid fermentation. The biomass-specific nitrogen feed rate is the most important factor influencing continuous citric acid production by yeasts. Numerous chemostat experiments showed the feasibility of continuous citrate production by yeasts.  相似文献   

2.
After exhaustion of the N-sources the yeast S.l. excretes citric and isocitric acid with high rates without interferring in the postlogarithmic phase the intracellular production of reserve materials like polysaccharides and especially lipids. The synthesis of citric acids and of reserve materials are therefore autonomically proceeding processes inside of the cells With increasing lipid content the ergosterol content increases The utilization of the ergosterol rich yeasts as valuable byproduct of the citric acid production is discussed.  相似文献   

3.
The present study deals with submerged ethanol, citric acid, and α-amylase fermentation by Saccharomyces cerevisiae SDB, Aspergillus niger ANSS-B5, and Candida guilliermondii CGL-A10, using date wastes as the basal fermentation medium. The physical and chemical parameters influencing the production of these metabolites were optimized. As for the ethanol production, the optimum yield obtained was 136.00 ± 0.66 g/l under optimum conditions of an incubation period of 72 h, inoculum content of 4% (w/v), sugars concentration of 180.0 g/l, and ammonium phosphate concentration of 1.0 g/l. Concerning citric acid production, the cumulative effect of temperature (30°C), sugars concentration of 150.0 g/l, methanol concentration of 3.0%, initial pH of 3.5, ammonium nitrate concentration of 2.5 g/l, and potassium phosphate concentration of 2.5 g/l during the fermentation process of date wastes syrup did increase the citric acid production to 98.42 ± 1.41 g/l. For the production of α-amylase, the obtained result shows that the presence of starch strongly induces the production of α-amylase with a maximum at 5.0 g/l. Among the various nitrogen sources tested, urea at 5.0 g/l gave the maximum biomass and α-amylase estimated at 5.76 ± 0.56 g/l and 2,304.19 ± 31.08 μmol/l/min, respectively after 72 h incubation at 30°C, with an initial pH of 6.0 and potassium phosphate concentration of 6.0 g/l.  相似文献   

4.
The growth and citric acid production kinetics of Saccharomycopsis lipolytica on glucose are investigated in an aerated stirred fermentor. Cellular growth first proceeds exponentially until exhaustion of ammonia in the fermentation medium. Cells then continue to grow at a reduced rate with a concomitant decrease in intracellular nitrogen content. Citric and isocitric acid production starts at the end of the growth phase. During about 80 hr excretion proceeds at a constant rate of 0.7 g/liter/hr for citric acid and 0.1 g/liter/hr for isocitric acid. The final citric and isocitric acid concentrations are 95 and 10g/liter, respectively. During acid excretion cellular respiration accounts for 60 and 35% of consumed oxygen and glucose. Both acid and CO2 production rates follow a Michaelis–Menten-type dependence on oxygen concentration with Michaelis–Menten constants of 0.9 and 0.15 mg/liter for acid and CO2 productions, respectively.  相似文献   

5.
Oxygen uptake and citric acid production by Candida lipolytica Y 1095   总被引:1,自引:0,他引:1  
The rates of oxygen uptake and oxygen transfer during cell growth and citric acid production by Candida lipolytica Y 1095 were determined. The maximum cell growth rate, 1.43 g cell/L . h, and volumetric oxygen uptake rate, 343 mg O(2)/L . h, occurred approximately 21 to 22 h after inoculation. At the time of maximum oxygen uptake, the biomass concentration was 1.3% w/v and the specific oxygen uptake rate was slightly greater than 26 mg O(2)/g cell . h. The specific oxygen uptake rate decreased to approximately 3 mg O(2)/g cell . h by the end of the growth phase.During citric acid production, as the concentration of dissolved oxygen was increased from 20% to 80% saturation, the specific oxygen uptake and specific citric acid productivity (mg citric acid/g cell . h) increased by 160% and 71%, respectively, at a biomass concentration of 3% w/v. At a biomass concentration of 5% w/v, the specific oxygen uptake and specific citric acid productivity increased by 230% and 82%, respectively, over the same range of dissolved oxygen concentrations.The effect of dissolved oxygen on citric acid yields and productivities was also determined. Citric acid yields appeared to be independent of dissolved oxygen concentration during the initial production phase; however, volumetric productivity (g citric acid/L . h) increased sharply with an increase in dissolved oxygen. During the second or subsequent production phase, citric acid yields increased by approximately 50%, but productivities decreased by roughly the same percentage due to a loss of cell viability under prolonged nitrogen-deficient conditions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
Ammonium to nitrate ratios of 0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM were tested to determine the optimal NH(4)(+) :NO(3)(-) ratio for improving biomass and bioactive compound production in Eleutherococcus koreanum Nakai adventitious roots using 3-L bulb-type bubble bioreactors. A high ammonium nitrogen ratio had a negative effect on root growth, and the highest fresh and dry weights were obtained when NH(4)(+):NO(3)(-) ratios were 5:25 and 10:20 (mM) after 5 weeks of culture. Although the total production of eleutherosides B and E was slightly higher at the 10:20 ratio than at the 5:25 ratio (NH(4)(+):NO(3)(-)), we proposed that the optimal NH(4)(+):NO(3)(-) ratio was 5:25 mM. This ratio achieved both the highest total production of five target bioactive compounds (eleutherosides B and E, chlorogenic acid, total phenolics, and flavonoids) and the highest root biomass. Furthermore, increasing NH(4)(+):NO(3)(-) ratios to 10:20 decreased pH in the medium, interrupted the absorption of essential minerals from the culture medium, and resulted in low biomass and increased relative oxidative stress levels, which were evaluated by determining 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Therefore, nitrate rather than ammonium nitrogen was more essential not for only biomass production but also for bioactive compound production in E. koreanum adventitious root cultures. The optimal nitrogen source ratio produced 5.63 g L(-1) of biomass and 24.41 mg of the five total bioactive compounds per gram of biomass (dry weight basis). The development of such in vitro culture technology will benefit the pilot-scale production of E. koreanum-based bioactive compounds for commercialization.  相似文献   

7.
A two-stage process of submerged citric acid fermentation with replacement of growth medium by fermentation medium has been worked out. The optimum composition of mineral nutrients and pH of the fermentation medium of the second stage of the process were determined. An addition of 0.5 g/l of NH4NO3 as nitrogen source and 0.1 g/l of MgSO4-7H2O as magnesium source ensured effective conversion of sucrose to citric acid. An addition to KH2PO4, on the other hand, was definitely unfavourable as it considerably reduced the product yield. The medium for the second stage of fermentation should be acidified to about pH 2.2, while the water used for washing the mycelium from the remains of the growth medium should have a pH of 2.5--3.5. Under these conditions, with an initial sucrose concentration of 100 g/l, after 132 hr fermentation at 26 degrees up to 90 g/l of citric acid was obtained, which corresponds to a productivity of over 16 g/l. day. The highest activity for citric acid formation was found in three- or four-day-old mycelium.  相似文献   

8.
Currently, the majority of worldwide microbial production of citric acid utilizes Aspergillus niger in a carbohydrate based submerged fermentation. Due to their high carbon content, hydrocarbons also have the potential of producing high concentrations of citric acid. Initial lab experiments conducted using 1875 ml batch fermentations with n-paraffin found that Candida lipolytica NRRL-Y-1095 assimilated the feedstock and had a citric acid productivity of 47 mg l(-1) h(-1). To determine the optimum level of initial biomass concentration, n-paraffin concentration, iron concentration and temperature for the production of citric acid, a central composite design was developed using 200 ml batch fermentations. The design involved conducting 31 batch fermentations under various combinations of high and low values of these four parameters. From this investigation empirical models were developed describing the interactions between the experimental parameters and citric acid production. It was found that the maximum concentration of citric acid produced was 9.8 g l(-1) and the optimum levels of each parameter for citric acid production were, 10--12% volume for initial biomass concentration, 10--15% volume for n-paraffin concentration, 10 mg l(-1) for ferric nitrate concentration, and 26--30 degrees C for temperature.  相似文献   

9.
This study reports on the effects of fermentor agitation and fed-batch mode of operation on citric acid production from Candida lipolytica using n-paraffin as the carbon source. An optimum range of agitation speeds in the 800-1000 rpm range corresponding to Reynolds numbers of 50000-63000 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Application of multiple fed-batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. The three-cycle fed-batch system increased overall citric acid yields to 0.8-1.0 g citricacid/g n-paraffin, approximately a 100% improvement in product yield from those observed in the single cycle fed-batch system and a 200% improvement over normal batch operation. The three-cycle fed-batch mode of operation also increased the final citric acid concentration to 42 g/l from about 12 and 6g/l for single fed-batch cycle and normal batch modes of operation, respectively. Increased citric acid concentrations in three-cycle fed-batch mode was achieved at longer fermentation times.  相似文献   

10.
Salt-tolerant yeasts are very important for the flavor formation in soy sauce fermentation production. A halophilic aromatic yeast was isolated on the basis of the molecular biological and metabolic functions from soy sauce. The ITS nucleotide sequence alignment method was used to identify the strain as Candida etchellsii by subjecting the sequence to NCBI-BLAST in comparison with that of the C. etchellsii strain Miso 0208 (a typical high-salt-tolerant halophilic aromatic yeast strain). Organic acids, amino acids and volatile flavor compounds were produced by the yeast strain which were analyzed by HPLC and SPME-GC/MS methods. Tartaric acid (0.979 ± 0.040 g/l), formic acid (0.636 ± 0.030 g/l), lactic acid (2.80 ± 0.10 g/l), α-alkone glutaric acid (0.132 ± 0.015 g/l), citric acid (2.59 ± 0.10 g/l) and succinic acid (3.03 ± 0.20 g/l) were detected at 72 h of fermentation, respectively. Free and acid hydrolyzed amino acids at levels of 3.7355 ± 0.0027 and 11.5604 ± 0.0037 g/l, respectively, 4-ethyl guaiacols as well as other volatile flavor compounds were also detected.  相似文献   

11.
The bacterium Xanthomonas campestris, which synthesizes the commercially important polysaccharide xanthan, was grown aseptically in 1.2 L fermenters using semicontinuous cell culture technique (d' = 0.0035 h-1). The effects of carbon-substrate concentration on xanthan production were investigated at three initial glucose concentrations (Go = 15, 20, 25 g/L). Cell biomass synthesis was nitrogen-limited by use of a chemically defined medium that contained NH3-N as the sole nitrogen source at a concentration where it was exhausted before glucose. A linear relationship between biomass synthesis and NH3-N depletion was observed. This relationship remained valid only until NH3-N exhaustion, after which biomass concentration slowly rose another 20 percent before declining. Another linear relationship was found between xanthan synthesis and glucose uptake. This relationship was unaffected by the disappearance of NH3-N and held through glucose exhaustion. The quasi-stoichiometric yield coefficients obtained for each linear relationship were not affected by G0-. Biomass synthesis kinetics showed no variation with G0 before NH3-N exhaustion; afterwards, cell biomass decline was delayed by increasing G0. Xanthan synthesis kinetics displayed no detectable response to depletion of NH3-N and plateauing of biomass concentration; however, there was a marked slow down in the net rate of xanthan synthesis and a drop in xanthan yield after cell biomass decline became noticeable.  相似文献   

12.
The native strain Yarrowia lipolytica VKM Y-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapeseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.  相似文献   

13.
The present investigation is concerned with the optimization of nitrogen for enhanced citric acid productivity by a 2-deoxy D-glucose resistant culture of Aspergillus niger NGd-280 in a 15 l stirred tank bioreactor. Nutrients, especially nitrogen source have a marked influence on citrate productivity because it is an essential constituent of basal cell proteins. Citric acid has been known to be produced when the nitrogen source was the limiting factor. Ammonium nitrate was employed as a nitrogen source in the present study and batch culture experiments were carried out under various concentrations of ammonium nitrate. Specific growth rate was decreased and the biosynthesis of citric acid was delayed at higher concentrations of ammonium nitrate. Specific citric acid production rate was the highest when intracellular ammonium ion concentration was between 2.0 and 3.0 mmol g(-1) cells. Citrate production was however, stopped when intracellular ammonium ion concentration decreased below 1.0 mmol g(-1) cell.  相似文献   

14.
Summary The production of citric acid by batch fermentation with the yeast strain Candida tropicalis ATCC 20240 was chosen as a potential process for the valorization of kraft black liquor. The effect of nitrogen concentration was studied and direct bioconversion of acetate to citrate was achieved when no nitrogen was supplemented to the medium. The use of kraft black liquor's acetate as a potential substrate for citric acid production was investigated. The acid precipitated liquor was highly inhibitory when its concentration was above 25% of the fermentation broth content. The yields of citric acid at low concentrations of kraft black liquor (5% and 15%) were the same as those recorded in synthetic acetate medium. Other organic acids present in the liquor may affect the yields and rates of citric acid production over acetate. Substrate uptake rates and product formation rates were lower, however, in comparison to synthetic media. The utilization of immobilized biomass improved the process parameters on kraft black liquor and enhanced the fermentation capabilities.  相似文献   

15.
The native strain Yarrowia lipolytica VKMY-2373 grown in a complete medium exhibited the maximum lipase activity at the concentration of rapesseed oil of at least 5.0 g/l. In the course of yeast growth, no considerable changes were observed in the glycerol concentration, the proportions of the major free fatty acids formed via oil hydrolysis, or the fatty acid composition of oil. Under nitrogen limitation of cell growth, the accumulation of citric acids reached 77.1 g/l with predominance of isocitric acid at pH 6.0, whereas at pH 4.5, almost equal amounts of citric and isocitric acids were produced. Cultivation of the mutant strain Y. lipolytica N 1 at pH 4.5 resulted in the predominant accumulation of citric acid (66.6 g/l) with an insignificant amount of isocitric acid. In the period of intense acid synthesis, high production of lipase was observed.  相似文献   

16.
Acidification of the endosomal/lysosomal pathway by the vacuolar-type proton translocating ATPase (V-ATPase) is necessary for a variety of essential eukaryotic cellular functions. Nevertheless, yeasts lacking V-ATPase activity (Deltavma) are viable when grown at low pH, suggesting alternative methods of organellar acidification. This was confirmed by directly measuring the vacuolar pH by ratio fluorescence imaging. When Deltavma yeasts were cultured and tested in the acidic conditions required for growth of V-ATPase-deficient mutants, the vacuolar pH was 5.9. Fluid-phase pinocytosis of acidic extracellular medium cannot account for these observations, because the V-ATPase-independent vacuolar acidification was unaffected in mutants deficient in endocytosis. Similarly, internalization of the plasmalemmal H(+)-ATPase (Pma1p) was ruled out, because overexpression of Pma1p failed to complement the Deltavma phenotype and did not potentiate the vacuolar acidification. To test whether weak electrolytes present in the culture medium could ferry acid equivalents to the vacuole, wild-type and the Deltavma yeasts were subjected to sudden changes in extracellular pH. In both cell types, the vacuoles rapidly alkalinized when external pH was raised from 5.5 (the approximate pH of the culture medium) to 7.5 and re-acidified when the yeasts were returned to a medium of pH 5.5. Importantly, these rapid pH changes were only observed when NH(4)(+), routinely added as a nitrogen source, was present. The NH(4)(+)-dependent acidification was not due to efflux of NH(3) from the vacuole, as cells equilibrated to pH 7.5 in the absence of weak electrolytes rapidly acidified when challenged with an acidic medium containing NH(4)(+). These findings suggest that although NH(3) can act as a cell-permeant proton scavenger, NH(4)(+) may function as a protonophore, facilitating equilibration of the pH across the plasma and vacuolar membranes of yeast. The high concentration of NH(4)(+) frequently added as a nitrogen source to yeast culture media together with effective NH(4)(+) transporters thereby facilitate vacuolar acidification when cells are suspended in acidic solutions.  相似文献   

17.
The effect of CaCl2 on the growth, morphology and citric acid production from sugarcane molasses by Aspergillus niger 419 was studied. The addition of 0.5g CaCl2/l to the fermentation medium induced a loose pelleted form of growth, reduced the biomass concentration and increased the volumetric productivity (g citric acid/h) and the specific production (g citric acid/g biomass dw) from 0.02 and 0.37 to 0.13 and 3.72, respectively.  相似文献   

18.
The effect of dissolved oxygen on citric acid production and oxygen uptake by Candida lipolytica Y 1095 was evaluated in cell recycle and fed-batch fermentation systems. The maximum observed volumetric productivity, which occurred at a dilution rate of 0.06 h(-1), a dissolved oxygen concentration of 80%, and a biomass concentration of 5% w/v, in the cell recycle system, was 1.32 g citric acid/L . h. At these same conditions, the citric acid yield was 0.65 g/g and the specific citric acid productivity was 24.9 mg citric acid/g cell . h. In the cell recycle system, citric acid yields ranged from 0.45 to 0.72 g/g. Both the volumetric and specific citric acid productivities were dependent on the dilution rate and the concentration of dissolved oxygen in the fermentor. Similar productivities (1.29 g citric acid/L . h) were obtained in the fed-batch system operated at a cycle time of 36 h, a dissolved oxygen concentration of 80%, and 60 g total biomass. Citric acid yields in the fed-batch fermentor were consistently lower than those obtained in the cell recycle system and ranged from 0.40 to 0.59 g/g. Although citric acid yields in the fed-batch fermentor were lower than those obtained in the cell recycle system, higher citric:isocitric acid ratios were obtained in the fed-batch fermentor. As in the cell recycle system, both the volumetric and specific citric acid productivities in the fed-batch fermentor were dependent on the cycle time and dissolved oxygen concentration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
The present investigation deals with citric acid production by some selected mutant strains of Aspergillus niger from cane molasses in 250 ml Erlenmeyer flasks. For this purpose, a conidial suspension of A. niger GCB-75, which produced 31.1 g/l citric acid from 15% (w/v) molasses sugar, was subjected to UV-induced mutagenesis. Among the 3 variants, GCM-45 was found to be a better producer of citric acid (50.0 +/- 2a) and it was further improved by chemical mutagenesis using N-methyl, N-nitro-N-nitroso-guanidine (MNNG). Out of 3,2-deoxy-D-glucose resistant variants, GCMC-7 was selected as the best mutant, which produced 96.1 +/- 1.5 g/l citric acid 168 h after fermentation of potassium ferrocyanide and H2SO4 pre-treated blackstrap molasses in Vogel's medium. On the basis of kinetic parameters such as volumetric substrate uptake rate (Qs), and specific substrate uptake rate (qs), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and produced more citric acid. The mutant GCMC-7 has greater commercial potential than the parental strain with regard to citrate synthase activity. The addition of 2.0 x 10(-5) M MgSO4 x 5H2O into the fermentation medium reduced the Fe2+ ion concentration by counter-acting its deleterious effect on mycelial growth. The magnesium ions also induced a loose-pelleted form of growth (0.6 mm, diameter), reduced the biomass concentration (12.5 g/l) and increased the volumetric productivity of citric acid monohydrate (113.6 +/- 5 g/l).  相似文献   

20.
The effect of increasing ethanol concentration in the feed on the growth and physiological activity of the yeast Candida utilis was studied. At steady-state of continuous culture with constant values of dilution rate, temperature, and pH in all fermenters in series biomass, ethanol and volatile acid concentrations, biomass yield and productivity and respiration activity were measured. In the three-stage system the maximum biomass concentration in the effluent and maximum productivity was achieved between 20 and 25 g ethanol/l in the feed. At higher concentrations, ethanol negatively affects the coupling of oxidative phosphorylation and respiratory control of cells resulting in a decrease in biomass yield and intracellular protein content. It was shown that the presence of acetate in the medium inhibits the respiration activity of yeasts growing on ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号