首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstituted membrane systems of synthetic phosphatidylcholines and the integral membrane enzyme cytochrome c oxidase were prepared in order to conduct nuclear magnetic resonance studies of lipid-protein interactions. These lipids, labeled with a geminate difluoro group on the 1-position hydrocarbon chain, were combined with the enzyme to give active lipid-protein particles with a well-defined ratio of lipid to protein. The fluorine magnetic resonance spectra of a series of preparations with different lipid/protein ratios suggest that the hydrocarbon chain mobility of the lipid is substantially reduced with increasing amounts of protein. The fluorine spectra of a single lipid-protein preparation show a dramatic increase in the number of the more mobile lipid chains with increasing temperature. The results suggest that the enzyme orders the lipid bilayer well beyond those lipids in direct contact with the protein surface, and that the amount of the lipid restricted by the enzyme is dependent upon temperature. The exchange of lipid between the restricted and the more mobile lipid environments most probably does not occur over the time scale measurable by the magnetic resonance techniques, about 10(-3) s.  相似文献   

2.
3.
Ever since it was discovered that biological membranes have a core of a bimolecular sheet of lipid molecules, lipid bilayers have been a model laboratory for investigating physicochemical and functional properties of biological membranes. Experimental and theoretical models help the experimental scientist to plan experiments and interpret data. Theoretical models are the theoretical scientist's preferred toys to make contact between membrane theory and experiments. Most importantly, models serve to shape our intuition about which membrane questions are the more fundamental and relevant ones to pursue. Here we review some membrane models for lipid self-assembly, monolayers, bilayers, liposomes, and lipid-protein interactions and illustrate how such models can help answering questions in modern lipid cell biology.  相似文献   

4.
Quenching of the fluorescence of Trp residues in a membrane protein by lipids with bromine-containing fatty acyl chains provides a powerful technique for measuring lipid-protein binding constants. Single Trp residues have been placed on the periplasmic and cytoplasmic sides of the mechanosensitive channel of large conductance MscL from Mycobacterium tuberculosis to measure, separately, lipid binding constants on the two faces of MscL. The chain-length dependence of lipid binding was found to be different on the two sides of MscL, the chain-length dependence being more marked on the cytoplasmic than on the periplasmic side. To determine if lipid binding constants are affected by the properties of the lipid molecules not in direct contact with MscL (the bulk lipid), the amount of bulk lipid present in the system was varied. The binding constant of the short-chain phospholipid didodecylphosphatidylcholine was found to be independent of the molar ratio of lipid/MscL pentamer over the range 500:1-50:1, suggesting that lipid binding constants are determined largely by the properties of the lipid molecules interacting directly with MscL. These results point to a model in which lipid molecules located on the transmembrane surface of a membrane protein (the annular lipid molecules), by playing a dominant role in the interaction between a membrane protein and the surrounding lipid bilayer, could effectively buffer the membrane protein from changes in the properties of the bulk lipid bilayer.  相似文献   

5.
A combined experimental and theoretical study is performed on binary dilauroylphosphatidylcholine/distearoylphosphatidylcholine (DLPC/DSPC) lipid bilayer membranes incorporating bacteriorhodopsin (BR). The system is designed to investigate the possibility that BR, via a hydrophobic matching principle related to the difference in lipid bilayer hydrophobic thickness and protein hydrophobic length, can perform molecular sorting of the lipids at the lipid-protein interface, leading to lipid specificity/selectivity that is controlled solely by physical factors. The study takes advantage of the strongly nonideal mixing behavior of the DLPC/DSPC mixture and the fact that the average lipid acyl-chain length is strongly dependent on temperature, particularly in the main phase transition region. The experiments are based on fluorescence energy transfer techniques using specifically designed lipid analogs that can probe the lipid-protein interface. The theoretical calculations exploit a microscopic molecular interaction model that embodies the hydrophobic matching as a key parameter. At low temperatures, in the gel-gel coexistence region, experimental and theoretical data consistently indicate that BR is associated with the short-chain lipid DLPC. At moderate temperatures, in the fluid-gel coexistence region, BR remains in the fluid phase, which is mainly composed of short-chain lipid DLPC, but is enriched at the interface between the fluid and gel domains. At high temperatures, in the fluid phase, BR stays in the mixed lipid phase, and the theoretical data suggest a preference of the protein for the long-chain DSPC molecules at the expense of the short-chain DLPC molecules. The combined results of the experiments and the calculations provide evidence that a molecular sorting principle is active because of hydrophobic matching and that BR exhibits physical lipid selectivity. The results are discussed in the general context of membrane organization and compartmentalization and in terms of nanometer-scale lipid-domain formation.  相似文献   

6.
The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique. This technique allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. Three types of biological surfaces were prepared by depositing various lipid-protein monolayers (with thicknesses ranging from 1 to 4 nm) on the inert, molecularly smooth mica surface: (i) hydrophobic lipid monolayers; (ii) amphiphilic polyelectrolyte surfaces of adsorbed polylysine; and (iii) deposited bacterial S-layer proteins. The adhesion, swelling, and wetting properties of these surfaces was measured as a function of relative humidity and time. Initial adhesion is due mainly to the van der Waals forces arising from nonpolar (hydrophobic) contacts. Following adhesive contact, significant molecular rearrangements can occur which alter their hydrophobic-hydrophilic balance and increase their adhesion with time. Increased adhesion is generally enhanced by (i) increased relative humidity (or degree of hydration); (ii) increased contact time; and (iii) increased rates of separation. The results are likely to be applicable to the adhesion of many other biosurfaces, and show that the hydrophobicity of a lipid or protein surface is not an intrinsic property of that surface but depends on its environment (e.g., on whether it is in aqueous solution or exposed to the atmosphere), and on the relative humidity of the atmosphere. It also depends on whether the surface is in adhesive contact with another surface and-when considering dynamic (nonequilibrium) conditions-on the time and previous history of its interaction with that surface. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Wetting and capillary condensation are thermodynamic phenomena in which the special affinity of interfaces to a thermodynamic phase, relative to the stable bulk phase, leads to the stabilization of a wetting phase at the interfaces. Wetting and capillary condensation are here proposed as mechanisms that in membranes may serve to induce special lipid phases in between integral membrane proteins leading to long-range lipid-mediated joining forces acting between the proteins and hence providing a means of protein organization. The consequences of wetting in terms of protein aggregation and protein clustering are derived both within a simple phenomenological theory as well as within a concrete calculation on a microscopic model of lipid-protein interactions that accounts for the lipid bilayer phase equilibria and direct lipid-protein interactions governed by hydrophobic matching between the lipid bilayer hydrophobic thickness and the length of the hydrophobic membrane domain. The theoretical results are expected to be relevant for optimizing the experimental conditions required for forming protein aggregates and regular protein arrays in membranes.  相似文献   

8.
This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease.  相似文献   

9.
The microwave saturation properties of various spin-labeled lipids in reconstituted complexes of the myelin proteolipid protein with dimyristoyl phosphatidylcholine have been studied both by conventional and saturation transfer electron spin resonance (ESR) spectroscopy. In the fluid phase, the conventional ESR spectra consist of a fluid and a motionally restricted (i.e., protein-associated) component, whose relative proportions can be determined by spectral subtractions and depend on the selectivity of the particular spin-labeled lipid for the protein. At 4 degrees C when the bulk lipid is in the gel phase, the integrated intensity of the saturation transfer ESR spectra displays a linear dependence on the fraction of motionally restricted lipid that is deduced from the conventional ESR spectra in the fluid phase, indicating the presence of distinct populations of free and protein-interacting lipid with no exchange between them on the saturation transfer ESR time scale in the gel phase. At 30 degrees C when the bulk lipid is in the fluid phase, the saturation transfer integral displays a nonlinear dependence on the fraction of motionally restricted lipid, consistent with exchange between the two lipid populations on the saturation transfer ESR time scale in the fluid phase. For lipid spin labels with different selectivities for the protein in complexes of fixed lipid/protein ratio, the data in the fluid phase are consistent with a constant (diffusion-controlled) on-rate for exchange at the lipid-protein interface. Values ranging between 1 and 9 x 10(6) s-1 are estimated for the intrinsic off-rates for exchange of spin-labeled stearic acid and phosphatidylcholine, respectively, at 30 degrees C. Conventional continuous wave saturation experiments lead to similar conclusions regarding the lipid exchange rates in the fluid and gel phases of the lipid/protein recombinants. The ESR saturation studies therefore demonstrate exchange on the time scale of the nitroxide spin-lattice relaxation at the lipid-protein interface of myelin proteolipid/dimyristoyl phosphatidylcholine complexes in the fluid phase but not in the gel phase.  相似文献   

10.
Phosphatidic acid (PA) has been identified as a bioactive lipid second messenger, yet despite extensive investigation, no cellular target has emerged as a mediator of its described biological effects. In this study, we identify the gamma isoform of the human protein phosphatase-1 catalytic subunit (PP1c gamma) as a high affinity in vitro target of PA. PA inhibited the enzyme dose-dependently with an IC(50) of 15 nm. Mechanistically, PA inhibited the enzyme noncompetitively with the kinetics of a tight binding inhibitor and a K(i) value of 0.97 +/- 0.24 nm. Together, these data describe one of the most potent in vitro effects of PA. To further elucidate the interaction between PA and PP1c gamma, structure/function analysis of the lipid was carried out using commercially available and synthetically generated analogs of PA. These studies disclosed that the lipid-protein interaction is dependent on the presence of the lipid phosphate as well as the presence of the fatty acid side chains, because lipids lacking either of these substituents resulted in complete loss of inhibition. However, the specific composition of the fatty acid side chains was not important for inhibition. Using 1-O-hexadecyl,2-oleoyl-PA, it was also shown that the carbonyl group of the sn-1 acyl linkage is not required for the lipid-protein interaction. Finally, using a lipid-protein overlay assay, it was demonstrated that PP1c gamma specifically and directly interacts with phosphatidic acid while not significantly binding other phospholipids. These results identify PA as a tight binding and specific inhibitor of PP1, and they raise the hypothesis that PP1c gamma may function as a mediator of PA action in cells. They also argue for the existence of a specific high affinity PA-binding domain on the enzyme.  相似文献   

11.
Molecular dynamics simulations were carried out for a V2 receptor (V2R) model embedded in a dimyristoylphosphatidylcholine (DMPC) bilayer. Both free and ligand-bound states of V2R were modeled. Our initial V2R model was obtained using a rule-based automated method for GPCR modeling and refined using constrained simulated annealing in vacuo. The docking site of the native vasopressin ligand was selected and justified upon consideration of ligand-receptor interactions and structure-activity data. The primary purpose of this work was to investigate the usefulness of MD simulation of an integral membrane protein like a GPCR receptor, upon inclusion of a carefully parameterized surrounding lipid membrane and water. Physical properties of the system were evaluated and compared with the fully hydrated pure DMPC bilayer membrane. The solvation interactions, individual lipid-protein interaction and fluctuations of the protein, the lipid, and water were analyzed in detail. As expected, the membrane-spanning helices of the protein fluctuate less than the peripheral loops do. The protein appears to disturb the local lipid structure. Simulations were carried out using AMBER 4.1 package upon constant number-pressure-temperature (NPT) conditions on massively parallel computers Cray T3E and IBM SP2.  相似文献   

12.
A modified multiple binding equilibria treatment is presented that allows determination of thermodynamic parameters of the interaction of phospholipids with integral membrane proteins solubilized in excess detergent. Lipid binding is modeled as a series of exchange reactions between lipid molecules and detergent molecules at the hydrophobic protein surface. A general equation is derived which expresses a relative association constant (K) and the total number of contact sites at the lipid-protein interface (N) in terms of experimentally measurable variables. A useful simplification of the general equation occurs when the amount of detergent is high relative to the total number of lipid binding sites in the sample. Computer simulations show that in cases we have examined there appears to be an experimentally accessible range of detergent to protein molar ratios where the approximation at high detergent is useful for analyzing experimental data. This model is used to examine the competition between cholate and spin-labeled phospholipids for the hydrophobic surfaces of bovine heart cytochrome c oxidase. We find, for example, that K = 12 +/- 2 for phosphatidylcholine relative to cholate (i.e., the cholate molecules are relatively easily displaced by membrane lipids). This helps to explain the experimental observation that cholate is an effective detergent both for solubilizing cytochrome c oxidase and for reconstituting this protein into a defined lipid bilayer environment. An excess of cholate readily displaces almost all of the native phospholipids, and the protein is dispersed in cholate micelles. However, when phospholipids are added back, the cholate molecules at the protein surface are replaced because of the higher relative binding of the phospholipids. Observed differences between the behavior of phosphatidylcholine and phosphatidylglycerol suggest that reconstitution in cholate is a selective process in which detergent molecules in localized areas on the protein surface are more readily displaced by certain phospholipids.  相似文献   

13.
The adsorption of membrane-associated protein cytochrome c to anionic lipid bilayers of dioleoyl phosphatidylglycerol was studied in low ionic strength physiological buffer using atomic force microscopy. The bilayers were supported on polylysinated mica. The formation of stable, single lipid bilayers was confirmed by imaging and force spectroscopy. Upon addition of low concentrations of cytochrome c, protein molecules were not topographically visible on the lipid bilayer-buffer interface. However, the forces required to punch through the bilayer by indentation using the atomic force microscopy probe were significantly lower after protein adsorption, which suggest that the protein inserts into the bilayer. Moreover, the apparent thickness of the bilayer remained unchanged after cytochrome c adsorption. Yet, mass spectroscopy and visible light absorption spectroscopy confirmed the presence of cytochrome c in the lipid bilayers. These results suggest that 1), cytochrome c inserts into the bilayer and resides in its hydrophobic core; 2), cytochrome c insertion changes the mechanical properties of the bilayer significantly; and 3), bilayer force spectroscopy may be a useful tool in investigating lipid-protein interactions.  相似文献   

14.
15.
Monomolecular layers of lipid extracts of microsomal, mitochondrial outer and inner membranes, and pure lipid species have been used to measure their interaction with apo- and holocytochrome c. Large differences were observed both with respect to the nature and the lipid specificity of the interaction. The initial electrostatic interaction of the hemefree precursor apocytochrome c with anionic phospholipids is followed by penetration of the protein in between the acyl chains. Apocytochrome c shows similar interactions for all anionic lipids tested. In strong contrast the holoprotein discriminates enormously between cardiolipin for which it has a high affinity and phosphatidylserine and phosphatidylinositol for which it has a much lower affinity. For these latter lipids the interaction with cytochrome c is primarily electrostatic. The cytochrome c-cardiolipin interaction shows several unique features which suggest the formation of a specific complex between the two molecules. These properties account for the preference in interaction of the apoprotein with the lipid extract of the outer mitochondrial membrane over that of the endoplasmic reticulum and the large preference of cytochrome c for the inner over that of the outer mitochondrial membrane lipid extract. Only apocytochrome c was able to induce close contacts between monolayers of the mitochondrial outer membrane lipids and vesicles of mitochondrial inner membrane lipids. Experiments with fragments of both protein and unfolding experiments with cytochrome c revealed that the differences in interaction between the two proteins are mainly due to differences in their tertiary structure and not the presence of the heme group itself. The initial unfolded structure of apocytochrome c is responsible for the high penetrative power of the protein and its ability to induce close membrane contact, whereas the folded structure of cytochrome c is responsible for the specific interaction with cardiolipin. The results are discussed in the light of the apocytochrome c import process in mitochondria and suggest that lipid-protein interactions contribute to targeting the precursor toward mitochondria and are important for its translocation across the outer mitochondrial membrane and the final localization of cytochrome c toward the outside of the inner mitochondrial membrane.  相似文献   

16.
The primary and secondary structure of human plasma apolipoprotein A-I and apolipoprotein E-3 have been analyzed to further our understanding of the secondary and tertiary conformation of these proteins and the structure and function of plasma lipoprotein particles. The methods used to analyze the primary sequence of these proteins used computer programs: (a) to identify repeated patterns within these proteins on the basis of conservative substitutions and similarities within the physicochemical properties of each residue; (b) for local averaging, hydrophobic moment, and Fourier analysis of the physicochemical properties; and (c) for secondary structure prediction of each protein carried out using homology, statistical, and information theory based methods. Circular dichroism was used to study purified lipid-protein complexes of each protein and quantitate the secondary structure in a lipid environment. The data from these analyses were integrated into a single secondary structure prediction to derive a model of each protein. The sequence homology within apolipoproteins A-I, E-3, and A-IV is used to derive a consensus sequence for two 11 amino acid repeating sequences in this family of proteins.  相似文献   

17.
Lipid-protein interactions in thylakoid membranes from lettuce, pea, tomato, and cucumber have been studied using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyl diglyceride and phosphatidylglycerol. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted lipids interacting with the integral membrane proteins. Comparison of the spectra from the same spin label in thylakoid membranes from different plants shows that the overall lipid fluidity in the membranes decreases with chilling sensitivity. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with integral membrane proteins. Thylakoid membranes of cucumber, a typical chilling-sensitive plant, have been found to have a higher proportion of motionally restricted lipids and a different lipid selectivity for lipid-protein interaction, as compared with those of pea, a typical chilling-resistant plant. This correlation with chilling sensitivity holds generally for the different plants studied. It seems likely that the chilling sensitivity in thylakoid membranes is not determined by lipid fluidity alone, but also by the lipid-protein interactions which could affect protein function in a more direct manner.  相似文献   

18.
1. The interactions of four proteins (albumin, myelin basic protein, melittin and glycophorin) with eight neutral or acidic glycosphingolipids, including sulphatides and gangliosides, five zwitterionic or anionic phospholipids and some of their mixtures, were studied in lipid monolayers at the air/145 mM-NaCl interface. 2. In lipid-free interfaces, the surface pressure and surface potential reached by either soluble or integral membrane proteins did not reveal marked differences. 3. All the proteins studied showed interactions with each of the lipids but the maximal interactions were found for basic proteins with acidic glycosphingolipids. 4. Surface-potential measurements indicated that different dipolar organizations at the interface can be adopted by lipid-protein interactions showing the same value for surface free energy. 5. The individual surface properties of either the lipid of protein component are modified as a consequence of the lipid-protein interaction. 6. In mixed-lipid monolayers, the composition of the interface may affect the lipid-protein interactions in a non-proportional manner with respect to the relative amount of the individual lipid components.  相似文献   

19.
20.
Monte Carlo simulations were used to describe the interaction of peripheral and integral proteins with lipids in terms of heat capacity profiles and protein distribution. The simulations were based on a two-state model for the lipid, representing the lipid state as being either gel or fluid. The interaction between neighboring lipids has been taken into account through an unlike nearest neighbor free energy term delta omega, which is a measure of the cooperativity of the lipid transition. Lipid/protein interaction was considered using the experimental observation that the transition midpoints of lipid membranes are shifted upon protein binding, a thermodynamic consequence of different binding constants of protein with fluid or gel lipids. The difference of the binding free energies was used as an additional parameter to describe lipid-protein interaction. The heat capacity profiles of lipid/protein complexes could be well described for both peripheral and integral proteins. Binding of proteins results in a shift and an asymmetric broadening of the melting profile. The model results in a coexistence of gel and fluid lipid domains in the proximity of the thermotropic transition. As a consequence, bound peripheral proteins aggregate in the temperature range of the lipid transition. Integral proteins induce calorimetric melting curves that are qualitatively different from that of peripheral proteins and aggregate in either gel or liquid crystalline lipid phase. The results presented here are in good agreement with calorimetric experiments on lipid-protein complexes and have implementations for the functional control of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号