首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The peptide transporter PEPT2 is a polytopic transmembrane protein that mediates the cellular uptake of di- and tripeptides and a variety of peptidomimetics. It is widely expressed in mammalian tissues, including kidney, lung, mammary gland, choroid plexus, and glia cells. In renal tubular cells, PEPT2 is exclusively found at the apical membrane. The molecular mechanisms underlying this polarized expression and targeting to the brush-border membrane are not known. We have explored the role of the 36 COOH-terminal amino acid residues in PEPT2 trafficking and apical expression. EGFP-tagged PEPT2 wild-type transporter and various truncated and mutant proteins were expressed in the polarized proximal tubule cell lines SKPT and OK, and the cellular distribution of the fusion proteins was assessed using confocal microscopy. Whereas deletion of the last seven amino acids (delC7) did not alter PEPT2 surface expression, deletion of the next residue (delC8) or up to 30 terminal amino acids resulted in impaired apical expression and distinct accumulation of mutant proteins in endosomal and lysosomal vesicles. Truncation of more amino acids (delC36) containing tyrosine-based motifs led to a rather diffuse intracellular distribution pattern. Mutations introduced at isoleucine-720 (I720A) and leucine-722 (I722A) also caused an impaired surface appearance. Internalization assays revealed a higher endocytotic rate of the PEPT2 mutants I720A, L722A, and delC36. Our data suggest that a three-amino acid stretch (INL) and tyrosine-based motifs within the COOH tail of PEPT2 are involved in PEPT2's apical membrane localization and membrane steady-state level. di- and tripeptide transport; polarized epithelial cells; lysosomes  相似文献   

2.
3.
We determined the effects of (+)pentazocine, a selective sigma(1) ligand, on the uptake of glycylsarcosine (Gly-Sar) in the human intestinal cell line Caco-2 which expresses the low affinity/high capacity peptide transporter PEPT1. Confluent Caco-2 cells were treated with various concentrations of (+)pentazocine for desired time (mostly 24 hr). The activity of PEPT1 was assessed by measuring the uptake of [(14)C]Gly-Sar in the presence of a H(+) gradient. (+)Pentazocine increased the uptake of [(14)C]Gly-Sar mediated by PEPT1 in a concentration- and time-dependent manner. Kinetic analyses have indicated that (+)pentazocine increased the maximal velocity (V(max)) for Gly-Sar uptake in Caco-2 cells without affecting the Michaelis-Menten constant (K(t)). In addition, semi-quantitative RT-PCR revealed that treatment of (+)pentazocine increased PEPT1 mRNA in Caco-2 cells in a concentration-dependent manner. These data suggest that sigma(1) receptor ligand (+)pentazocine up-regulates PEPT1 in Caco-2 cells at the level of increased mRNA, causing an increase in the density of the transporter protein in the cell membrane.  相似文献   

4.
In this study, we describe the rational synthesis and functional analysis of novel high affinity inhibitors for the mammalian peptide transporter PEPT2. Moreover, we demonstrate which structural properties convert a transported compound into a non-translocated inhibitor. Starting from Lys[Z(NO(2))]-Pro (where Z is benzyloxycarbonyl), which we recently identified as the first competitive high affinity inhibitor of the intestinal peptide transporter PEPT1, a series of different lysine-containing dipeptide derivatives was synthesized and studied for interaction with PEPT2 based on transport competition assays in Pichia pastoris yeast cells expressing PEPT2 heterologously and in renal SKPT cells expressing PEPT2. In addition, the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT2 was used to determine whether the compounds are transported electrogenically or block the uptake of dipeptides. Synthesis and functional analysis of Lys-Lys derivatives containing benzyloxycarbonyl or 4-nitrobenzyloxycarbonyl side chain protections provided a set of inhibitors that reversibly inhibited the uptake of dipeptides by PEPT2 with K(i) values as low as 10 +/- 1 nm. This is the highest affinity of a ligand of PEPT2 ever reported. Moreover, based on the structure-function relationship, we conclude that the spatial location of the side chain amino protecting group in a dipeptide containing a diaminocarbonic acid and its intramolecular distance from the Calpha atom are key factors for the transformation of a substrate into an inhibitor of PEPT2.  相似文献   

5.
The lactating mammary gland utilizes free plasma amino acids as well as those derived by hydrolysis from circulating short-chain peptides for protein synthesis. Apart from the major route of amino acid nitrogen delivery to the gland by the various transporters for free amino acids, it has been suggested that dipeptides may also be taken up in intact form to serve as a source of amino acids. The identification of peptide transporters in the mammary gland may therefore provide new insights into protein metabolism and secretion by the gland. The expression and distribution of the high-affinity type proton-coupled peptide transporter PEPT2 were investigated in rat lactating mammary gland as well as in human epithelial cells derived from breast milk. By use of RT-PCR, PEPT2 mRNA was detected in rat mammary gland extracts and human milk epithelial cells. The expression pattern of PEPT2 mRNA revealed a localization in epithelial cells of ducts and glands by nonisotopic high resolution in situ hybridization. In addition, immunohistochemistry was carried out and showed transporter immunoreactivity in the same epithelial cells of the glands and ducts. In addition, two-electrode voltage clamp recordings using PEPT2-expressing Xenopus laevis oocytes demonstrated positive inward currents induced by selected dipeptides that may play a role in aminonitrogen handling in mammalian mammary gland. Taken together, these data suggest that PEPT2 is expressed in mammary gland epithelia, in which it may contribute to the reuptake of short-chain peptides derived from hydrolysis of milk proteins secreted into the lumen. Whereas PEPT2 also transports a variety of drugs, such as selected beta-lactams, angiotensin-converting enzyme inhibitors, and antiviral and anticancer metabolites, their efficient reabsorption via PEPT2 may reduce the burden of xenobiotics in milk.  相似文献   

6.
In this study we described the design, rational synthesis and functional characterization of a novel radiolabeled hydrolysis-resistant high-affinity substrate for H(+)/peptide cotransporters. L-4,4'-Biphenylalanyl-L-Proline (Bip-Pro) was synthesized according to standard procedures in peptide chemistry. The interaction of Bip-Pro with H(+)/peptide cotransporters was determined in intestinal Caco-2 cells constitutively expressing human H(+)/peptide cotransporter 1 (PEPT1) and in renal SKPT cells constitutively expressing rat H(+)/peptide cotransporter 2 (PEPT2). Bip-Pro inhibited the [(14)C]Gly-Sar uptake via PEPT1 and PEPT2 with exceptional high affinity (K(i) = 24 microm and 3.4 microm, respectively) in a competitive manner. By employing the two-electrode voltage clamp technique in Xenopus laevis oocytes expressing PEPT1 or PEPT2 it was found that Bip-Pro was transported by both peptide transporters although to a much lower extent than the reference substrate, Gly-Gln. Bip-Pro remained intact to > 98% for at least 8 h when incubated with intact cell monolayers. Bip-[(3)H]Pro uptake into SKPT cells was linear for up to 30 min and pH dependent with a maximum at extracellular pH 6.0. Uptake was strongly inhibited, not only by unlabeled Bip-Pro but also by known peptide transporter substrates such as dipeptides, cefadroxil, Ala-4-nitroanilide and delta-aminolevulinic acid, but not by glycine. Bip-Pro uptake in SKPT cells was saturable with a Michaelis-Menten constant (K(t)) of 7.6 microm and a maximal velocity (V(max)) of 1.1 nmol x 30 min(-1) x mg of protein(-1). Hence, the uptake of Bip-Pro by PEPT2 is a high-affinity, low-capacity process in comparison to the uptake of Gly-Sar. We conclude that Bip-[(3)H]Pro is a valuable substrate for both mechanistic and structural studies of H(+)/peptide transporter proteins.  相似文献   

7.
The interaction of the antibacterial phosphonodipeptide alafosfalin with mammalian H(+)/peptide cotransporters was studied in Caco-2 cells, expressing the low-affinity intestinal type peptide transporter 1 (PEPT1), and SKPT cells, expressing the high-affinity renal type peptide transporter 2 (PEPT2). Alafosfalin strongly inhibited the uptake of [(14)C]glycylsarcosine with K(i) values of 0.19 +/- 0.01 mm and 0.07 +/- 0.01 mm for PEPT1 and PEPT2, respectively. Saturation kinetic studies revealed that in both cell types alafosfalin affected only the affinity constant (K(t)) but not the maximal velocity (V(max)) of glycylsarcosine (Gly-Sar) uptake. The inhibition constants and the competitive nature of inhibition were confirmed in Dixon-type experiments. Caco-2 cells and SKPT cells were also cultured on permeable filters: apical uptake and transepithelial apical to basolateral flux of [(14)C]Gly-Sar across Caco-2 cell monolayers were reduced by alafosfalin (3 mm) by 73%. In SKPT cells, uptake of [(14)C]Gly-Sar but not flux was inhibited by 61%. We found no evidence for an inhibition of the basolateral to apical uptake or flux of [(14)C]Gly-Sar by alafosfalin. Alafosfalin (3 mm) did not affect the apical to basolateral [(14)C]mannitol flux. Determined in an Ussing-type experiment with Caco-2 cells cultured in Snapwells trade mark, alafosfalin increased the short-circuit current through Caco-2 cell monolayers. We conclude that alafosfalin interacts with both H(+)/peptide symporters and that alafosfalin is actively transported across the intestinal epithelium in a H(+)-symport, explaining its oral availability. The results also demonstrate that dipeptides where the C-terminal carboxyl group is substituted by a phosphonic function represent high-affinity substrates for mammalian H(+)/peptide cotransporters.  相似文献   

8.
Liu Z  Wang C  Liu Q  Meng Q  Cang J  Mei L  Kaku T  Liu K 《Peptides》2011,32(4):747-754
Cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) is a dipeptide with anti-hepatitis activity that has been chemically synthesized. Previous experiments in rats showed that JBP485 was well absorbed by the intestine after oral administration. The human peptide transporter (PEPT1) is expressed in the intestine and recognizes compounds such as dipeptides and tripeptides. The purposes of this study were to determine if JBP485 acted as a substrate for intestinal PEPT1, and to investigate the characteristics of JBP485 uptake and transepithelial transport by PEPT1. The uptake of JBP485 was pH dependent in human intestinal epithelial cells Caco-2. And JBP485 uptake was also significantly inhibited by glycylsarcosine (Gly-Sar, a typical substrate for PEPT1 transporters), JBP923 (a derivative of JBP485), and cephalexin (CEX, a β-lactam antibiotic and a known substrate of PEPT1) in Caco-2 cells. The rate of apical-to-basolateral transepithelial transport of JBP485 was 1.84 times higher than that for basolateral-to-apical transport. JBP485 transport was obviously inhibited by Gly-Sar, JBP923 and CEX in Caco-2 cells. The uptake of JBP485 was increased by verapamil but not by cyclosporin A (CsA) and inhibited by the presence of Zn2+ or the toxic metabolite of ethanol, acetaldehyde (AcH) in Caco-2 cells. The in vivo uptake of JBP485 was increased by verapamil and decreased by ethanol in vivo, which was consisted with the in vitro study. PEPT1 mRNA levels were enhanced after exposure of the cells to JBP485 for 24 h, compared to control. In conclusion, JBP485 was actively transported by the intestinal oligopeptide transporter PEPT1. This mechanism is likely to contribute to the rapid absorption of JBP485 by the gastrointestinal tract after oral administration.  相似文献   

9.
Peptide transport and animal growth: the fish paradigm   总被引:1,自引:0,他引:1  
Protein digestion products are transported from the intestinal lumen into the enterocyte both in the form of free amino acids (AAs), by a large variety of brush border membrane AA transporters, and in the form of di/tripeptides, by a single brush border membrane transporter known as PEPtide Transporter 1 (PEPT1). Recent data indicate that, at least in teleost fish, PEPT1 plays a significant role in animal growth by operating, at the gastrointestinal level, as part of an integrated response network to food availability that directly supports body weight. Notably, PEPT1 responds to both fasting and refeeding and is involved in a phenomenon known as compensatory growth (a phase of accelerated growth when food levels are restored after a period of growth depression). In particular, PEPT1 expression decreases during fasting and increases during refeeding, which is the opposite of what observed so far in mammals and birds. These findings in teleost fish document, to our knowledge, for the first time in a vertebrate model, a direct correlation between the expression of an intestinal transporter, such as PEPT1, primarily involved in the uptake of dietary protein degradation products and animal growth.  相似文献   

10.
Caenorhabditis elegans gut granules are intestine specific lysosome-related organelles with birefringent and autofluorescent contents. We identified pgp-2, which encodes an ABC transporter, in screens for genes required for the proper formation of gut granules. pgp-2(-) embryos mislocalize birefringent material into the intestinal lumen and are lacking in acidified intestinal V-ATPase-containing compartments. Adults without pgp-2(+) function similarly lack organelles with gut granule characteristics. These cellular phenotypes indicate that pgp-2(-) animals are defective in gut granule biogenesis. Double mutant analysis suggests that pgp-2(+) functions in parallel with the AP-3 adaptor complex during gut granule formation. We find that pgp-2 is expressed in the intestine where it functions in gut granule biogenesis and that PGP-2 localizes to the gut granule membrane. These results support a direct role of an ABC transporter in regulating lysosome biogenesis. Previously, pgp-2(+) activity has been shown to be necessary for the accumulation of Nile Red-stained fat in C. elegans. We show that gut granules are sites of fat storage in C. elegans embryos and adults. Notably, levels of triacylglycerides are relatively normal in animals defective in the formation of gut granules. Our results provide an explanation for the loss of Nile Red-stained fat in pgp-2(-) animals as well as insight into the specialized function of this lysosome-related organelle.  相似文献   

11.
The peptide transporter PEPT2 mediates the cellular uptake of di- and tripeptides and selected drugs by proton-substrate cotransport across the plasma membrane. PEPT2 was functionally identified initially in the apical membrane of renal tubular cells but was later shown to be expressed in other tissues also. To investigate the physiological importance of PEPT2 and for a detailed analysis of the protein expression sites, we generated a Pept2 knockout mouse line in which the Pept2 gene was disrupted by insertion of a beta-galactosidase gene under the control of the PEPT2 promoter. The Pept2(-/-) mice showed no obvious phenotypic abnormalities but also no adaptive upregulation in the expression level of related genes in the kidney. The importance of PEPT2 in the reabsorption of filtered dipeptides was demonstrated in knockout animals by significantly reduced renal accumulation of a fluorophore-labeled and a radiolabeled dipeptide after in vivo administration of the tracers. This indicates that PEPT2 is the main system responsible for tubular reabsorption of peptide-bound amino acids, although this does not lead to major changes in renal excretion of protein or free amino acids.  相似文献   

12.
Recently the existence of two different Na(+)-coupled oligopeptide transport systems has been described in mammalian cells. These transport systems are distinct from the previously known H(+)/peptide cotransporters PEPT1 and PEPT2, which transport only dipeptides and tripeptides. To date, the only peptide transport system known to exist in the intestine is PEPT1. Here we investigated the expression of the Na(+)-coupled oligopeptide transporters in intestinal cell lines, using the hydrolysis-resistant synthetic oligopeptides deltorphin II and [d-Ala(2),d-Leu(5)]enkephalin (DADLE) as model substrates. Caco-2 cells and CCD841 cells, both representing epithelial cells from human intestinal tract, were able to take up these oligopeptides. Uptake of deltorphin II was mostly Na(+) dependent, with more than 2 Na(+) involved in the uptake process. In contrast, DADLE uptake was only partially Na(+) dependent. The uptake of both peptides was also influenced by H(+) and Cl(-), although to a varying degree. The processes responsible for the uptake of deltorphin II and DADLE could be differentiated not only by their Na(+) dependence but also by their modulation by small peptides. Several dipeptides and tripeptides stimulated deltorphin II uptake but inhibited DADLE uptake. These modulating small peptides were, however, not transportable substrates for the transport systems that mediate deltorphin II or DADLE uptake. These two oligopeptide transport systems were also able to take up several nonopioid oligopeptides, consisting of 9-17 amino acids. This represents the first report on the existence of transport systems in intestinal cells that are distinct from PEPT1 and capable of transporting oligopeptides consisting of five or more amino acids.  相似文献   

13.
Benner J  Daniel H  Spanier B 《PloS one》2011,6(9):e25624
The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H(+)-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2.  相似文献   

14.
Free amino acids and short chain peptides are the main digestion products of dietary proteins in the small intestine. Whether there is a direct interference in transport of both groups of degradation products is not known. We used human intestinal Caco-2 cells to investigate whether the absorption of dipeptides by the peptide transporter PEPT1 alters the apical uptake of free cationic and neutral amino acids. Influx of L-[3H]Arg into Caco-2 cells was Na+-independent and mediated mainly by the b(0,+) system recognizing both cationic and neutral amino acids. Preincubation of cells with 10 mM of selected neutral, mono- or dicationic dipeptides increased the influx of L-Arg up to fourfold. Preloading with equivalent concentrations of the corresponding free amino acids also increased L-Arg influx but dipeptides always proved to be more efficient. The observed trans-stimulation was found to be specific for cationic amino acids since transport of L-[3H]Ala remained unaffected. We here demonstrate for the first time a direct interplay in amino acid and peptide transport in intestinal cells that may selectively alter the kinetics of amino acid absorption.  相似文献   

15.
BACKGROUND: TOR is a phosphatidylinositol kinase (PIK)-related kinase that controls cell growth and proliferation in response to nutritional cues. We describe a C. elegans TOR homolog (CeTOR) and phenotypes associated with CeTOR deficiency. These phenotypes are compared with the response to starvation and the inactivation of a variety of putative TOR targets.RESULTS: Whether caused by mutation or RNA interference, TOR deficiency results in developmental arrest at mid-to-late L3, which is accompanied by marked gonadal degeneration and a pronounced intestinal cell phenotype. A population of refractile, autofluorescent intestinal vesicles, which take up the lysosomal dye Neutral Red, increases dramatically in size, while the number of normal intestinal vesicles and the intestinal cytoplasmic volume decrease progressively. This is accompanied by an increase in the gut lumen size and a compromise in the intestine's ability to digest and absorb nutrients. CeTOR-deficient larvae exhibit no significant dauer characteristics, but share some features with starved L3 larvae. Notably, however, starved larvae do not have severe intestinal atrophy. Inactivation of C. elegans p70S6K or TAP42 homologs does not reproduce CeTOR deficiency phenotypes, nor does inactivation of C. elegans TIP41, a putative negative regulator of CeTOR function, rescue CeTOR deficiency. In contrast, inactivating the C. elegans eIF-4G homolog and eIF-2 subunits results in developmental arrest accompanied by the appearance of large, refractile intestinal vesicles and severe intestinal atrophy resembling that of CeTOR deficiency.CONCLUSIONS: The developmental arrest and intestinal phenotypes of CeTOR deficiency are due to an inhibition of global mRNA translation. Thus, TOR is a major upstream regulator of overall mRNA translation in C. elegans, as in yeast.  相似文献   

16.
Brandsch M 《Amino acids》2006,31(2):119-136
Summary. Membrane transport of L-proline has received considerable attention in basic and pharmaceutical research recently. Of the most recently cloned members of the solute carrier family, two are “proline transporters”. The amino acid transporter PAT1, expressed in intestine, kidney, brain and other organs, mediates the uptake of proline and derivatives in a pH gradient-dependent manner. The Na+-dependent proline transporter SIT1, cloned in 2005, exhibits the properties of the long-sought classical IMINO system. Proline-containing peptides are of interest for several reasons. Many biologically important peptide sequences contain highly conserved proline residues. Xaa-Pro peptides are very often resistant to enzymatic hydrolysis and display, in contrast to Pro-Xaa peptides, a high affinity to the H+/peptide cotransporter PEPT1 which is expressed in intestinal, renal, lung and biliary duct epithelial cells. Furthermore, several orally available drugs are recognized by PEPT1 as Xaa-Pro analogues due to their sterical resemblance to small peptides.  相似文献   

17.
The tyrosine kinase Janus kinase 3 (JAK3) contributes to signaling regulating the proliferation and apoptosis of lymphocytes and tumor cells. Replacement of lysine by alanine in the catalytic subunit yields the inactive K851AJAK3 mutant that underlies severe combined immune deficiency. The gain-of-function mutation A572VJAK3 is found in acute megakaryoplastic leukemia and T cell lymphoma. The excessive nutrient demand of tumor cells requires upregulation of transporters in the cell membrane including peptide transporters PEPT1 and PEPT2. The carriers further accomplish intestinal peptide transport. Little is known about signaling regulating peptide transport. The present study explored whether PEPT1 and PEPT2 are upregulated by JAK3. PEPT1 or PEPT2 was expressed in Xenopus oocytes with or without additional expression of JAK3, and electrogenic peptide (glycine–glycine) transport was determined by dual-electrode voltage clamp. PEPT2-HA membrane protein abundance was analyzed by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide-induced current in Ussing chamber experiments. In PEPT1- and PEPT2-expressing oocytes, but not in water-injected oocytes, the dipeptide gly–gly generated an inward current, which was significantly increased following coexpression of JAK3. The effect of JAK3 on PEPT1 was mimicked by A568VJAK3 but not by K851AJAK3. JAK3 increased maximal peptide-induced current in PEPT1-expressing oocytes but rather decreased apparent affinity of the carrier. Coexpression of JAK3 enhanced the PEPT2-HA protein abundance in the cell membrane. In JAK3- and PEPT1-expressing oocytes, peptide-induced current was blunted by the JAK3 inhibitor WHI-P154, 4-[(3′-bromo-4′-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline (22 μM). In intestinal segments gly–gly generated a current which was significantly smaller in JAK3-deficient mice (jak3 ?/?) than in wild-type mice (jak3 +/+). In conclusion, JAK3 is a powerful regulator of peptide transporters PEPT1 and PEPT2.  相似文献   

18.
Rouault TA 《Cell》2005,122(5):649-651
The iron-containing porphyrin heme provides a rich source of dietary iron for mammals. The fact that animals can derive iron from heme implies the existence of a transporter that would transport heme from the gut lumen into intestinal epithelial cells. In this issue of Cell, Shayeghi, McKie, and co-workers (Shayeghi et al., 2005) now describe a heme transporter that is expressed in the apical region of epithelial cells in the mouse duodenum. Their identification of heme carrier protein 1 (HCP1) provides a major missing piece in our understanding of iron uptake and mammalian nutrition.  相似文献   

19.
20.
Copper is an essential micronutrient in humans and is required for a wide range of physiological processes, including neurotransmitter biosynthesis, oxidative metabolism, protection against reactive oxygen species, and angiogenesis. The first step in the acquisition of dietary copper is absorption from the intestinal lumen. The major human high-affinity copper uptake protein, human copper transporter hCTR1, was recently shown to be at the basolateral or blood side of both intestinal and renal epithelial cell lines and thus does not play a direct role in this initial step. We sought to functionally identify the major transport pathways available for the absorption of dietary copper across the apical intestinal membrane using Caco2 cells, a well-established model for human enterocytes. The initial rate of apical copper uptake into confluent monolayers of Caco2 cells is greatly elevated if amino acids and serum proteins are removed from the growth media. Uptake from buffered saline solutions at neutral pH (but not at lower pH) is inhibited by either d- or l-histidine, unaltered by the removal of sodium ions, and inhibited by ~90% when chloride ions are replaced by gluconate or sulfate. Chloride-dependent copper uptake occurs with Cu(II) or Cu(I), although Cu(I) uptake is not inhibited by histidine, nor by silver ions. A well-characterized inhibitor of anion exchange systems, DIDS, inhibited apical copper uptake by 60-70%, while the addition of Mn(II) or Fe(II), competitive substrates for the divalent metal transporter DMT1, had no effect on copper uptake. We propose that anion exchangers play an unexpected role in copper absorption, utilizing copper-chloride complexes as pseudo-substrates. This pathway is also observed in mouse embryonic fibroblasts, human embryonic kidney cells, and Cos-7 cells. The special environment of low pH, low concentration of protein, and protonation of amino acids in the early intestinal lumen make this pathway especially important in dietary copper acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号