首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study sought to determine if the postural sway of a subject required to grasp a tray (motor task) holding a cup filled with water and prevent spilling (mental task), would be reduced by consciously redirecting attention to maintain the tray in a horizontal position. We hypothesized the mental task would increase the stabilization of standing postural balance. Postural sway was measured in 17 normal subjects under the following conditions: 1) holding a 100 g weight in each hand (total 200 g; no mental task), 2) holding with both hands a tray on which 200 g was placed (tray-holding task), and 3) holding with both hands a tray on which a cup filled with water weighing 200 g was placed in the center (mental task). Postural sway was significantly reduced during the mental task versus other tasks. Standing posture balance was stabilized when a mental task was added. Thus, we concluded that higher brain functions such as attention and consciousness exerted a significant influence over the control of standing posture.  相似文献   

2.

Introduction

Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture.

Materials and Methods

Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®). Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure.

Results

During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades) in comparison with a simple task of fixation.

Discussion - Conclusion

These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway.  相似文献   

3.
The present study investigates the mechanisms underlying changes in postural strategy that occur to compensate for mechanical ankle joint restrictions induced by wearing ski-boots during postural exercises. Fourteen experienced skiers were asked to stand as still as possible in a stable (STA) posture and in 2 postures with instability in the medio/lateral and antero/posterior (ML and AP postures) direction. Postural tasks were performed with eyes open or closed and while wearing or not wearing ski-boots. The electromyographic (EMG) activity of representative lower limb muscles and positions of centre-of-foot pressure (COP) were recorded and analyzed. Our results illustrated enhanced postural performances with ski-boots in the STA posture, whereas postural performances remained unchanged when wearing ski-boots in the ML and AP postures. Analysis of COP sways in the frequency domain did not illustrate any modification in the contribution of different neuronal loops when the study subjects wore ski-boots. EMG showed that the mechanical effects of wearing ski-boots were compensated by changes in postural strategy through the reorganization of muscle coordination, made possible by inherent redundancies in the human body. The preservation of postural performances, despite restrictions of ankle degrees-of-freedom induced by ski-boots, emphasizes the subjects’ capacity to exploit the additional support provided by ski-boots by adequately adjusting muscle coordination to control posture in different balance conditions.  相似文献   

4.
There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13–17 years-old) and 11 non dyslexics (13–16 years-old) participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of −1 diopter (ACCOM1) over each eye; viewing with −3 diopters over each eye (ACCOM3); viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the −1 lenses increased the surface of body sway significantly whereas the −3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain) revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum), was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to improve their posture, at least not immediately when confronted to convergence accommodation conflict.  相似文献   

5.
The aim of the present study was to determine the relative roles of genetic and environmental influences on postural balance in older women. The participants were 97 monozygotic (MZ) and 102 dizygotic (DZ) female twins, aged 64-76 yr. Postural sway was measured during side-by-side stance with eyes open and eyes closed, and during semitandem stance with eyes open on a force platform. Sway data were condensed into four first-order and one second-order latent factors. The second-order factor, named balance, incorporates sway data from multiple tests and thus best describes the phenotype of postural balance. The contribution of genetic and environmental influences on the variability of the latent factors was assessed by using structural equation modeling. Additive genetic influences accounted for 35% and shared environmental influences accounted for 24% of the total variance in the balance factor. In the present study, postural balance in older women had a moderate genetic component. Genetic influences on postural balance may be mediated through gene variation in the systems that control posture. The finding that individual environmental influences accounted for almost one-half of the variance in postural balance points to the potential of targeted interventions to maintain and improve balance control in older persons.  相似文献   

6.
Postural control is commonly investigated by observing responses to perturbations. We developed a perturbation paradigm mimicking self-generated errors in weight shifting, which are a common cause of falling among older adults. Our aim was to determine the effects of this small, but complex, perturbation on postural sway of healthy young adults and evaluate the role of vision and cognition during movement dependent perturbations. Fifteen participants stood hip-width apart with their eyes open, closed and while performing two different cognitive tasks. Participants were continuously perturbed by medial-lateral (ML) support surface translations corresponding to, and hence doubling, their own center of mass sway. We analyzed the standard deviation (SD), root mean square (RMS), range, and mean power frequency (MPF) of center of pressure displacements. ML postural sway increased due to the perturbation (SD p ≤ .001, range p < .001, RMS p ≤ .001, MPF p < .001). Cognitive load increased the ML sway range (p = .048). Lack of vision increased ML MPF (p = .001) and anterior-posterior (AP) range (p < .001), SD (p < .001), and RMS (p = .001). Significant interaction of vision with the perturbation was found for the ML range (p = .045) and AP SD (p = .018). The perturbation specifically affected ML postural sway. Increased MPF is indicative of a postural control strategy change, which was insufficient for fully controlling the increased sway. Despite being small, this type of perturbation appears to be challenging for young adults.  相似文献   

7.
The degree of multiscale complexity in human behavioral regulation, such as that required for postural control, appears to decrease with advanced aging or disease. To help delineate causes and functional consequences of complexity loss, we examined the effects of visual and somatosensory impairment on the complexity of postural sway during quiet standing and its relationship to postural adaptation to cognitive dual tasking. Participants of the MOBILIZE Boston Study were classified into mutually exclusive groups: controls [intact vision and foot somatosensation, n = 299, 76 ± 5 (SD) yr old], visual impairment only (<20/40 vision, n = 81, 77 ± 4 yr old), somatosensory impairment only (inability to perceive 5.07 monofilament on plantar halluxes, n = 48, 80 ± 5 yr old), and combined impairments (n = 25, 80 ± 4 yr old). Postural sway (i.e., center-of-pressure) dynamics were assessed during quiet standing and cognitive dual tasking, and a complexity index was quantified using multiscale entropy analysis. Postural sway speed and area, which did not correlate with complexity, were also computed. During quiet standing, the complexity index (mean ± SD) was highest in controls (9.5 ± 1.2) and successively lower in the visual (9.1 ± 1.1), somatosensory (8.6 ± 1.6), and combined (7.8 ± 1.3) impairment groups (P = 0.001). Dual tasking resulted in increased sway speed and area but reduced complexity (P < 0.01). Lower complexity during quiet standing correlated with greater absolute (R = -0.34, P = 0.002) and percent (R = -0.45, P < 0.001) increases in postural sway speed from quiet standing to dual-tasking conditions. Sensory impairments contributed to decreased postural sway complexity, which reflected reduced adaptive capacity of the postural control system. Relatively low baseline complexity may, therefore, indicate control systems that are more vulnerable to cognitive and other stressors.  相似文献   

8.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   

9.
Matheron E  Kapoula Z 《PloS one》2011,6(3):e18110
The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict.  相似文献   

10.
Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment.  相似文献   

11.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

12.
The objective of this study was to investigate the reciprocal influences of stance pattern (bilateral stance vs. unilateral stance) and thumb-index precision grip task (static target vs. dynamic target) on postural–suprapostural tasks by manipulating task-load. Fifteen healthy volunteers participated in four postural–suprapostural tasks, including static force-matching in bilateral/unilateral stance (BS_static; US_static), dynamic force-matching in bilateral/unilateral stance (BS_dynamic; US_dynamic), and two control tasks in bilateral and unilateral stances without a finger task. The normalized force error (NFE), reaction time (RT) of the finger tasks, and normalized change in center of pressure sway (ΔNCoP) were measured. For suprapostural task performance, a significant interaction effect between postural and suprapostural tasks on NFE of the finger tasks was noted (static: BS < US; dynamic: BS > US), but RT was not different among the four tasks. For postural task performance, negative ΔNCoP during unilateral stance indicated a spontaneous reduction in postural sway due to added force-matching. In contrast, addition of force-matching tended to increase postural sway during bilateral stance, but postural fluctuations decreased as task-load of suprapostural task increased (BS_dynamic < BS_static). In conclusion, performance of postural–suprapostural tasks was differently modulated by task-load increment. Our observations favored adaptive resource-sharing and implicit expansion of resource capacity for a postural task with a motor suprapostural goal.  相似文献   

13.
Motion sickness (MS) usually occurs for a narrow band of frequencies of the imposed oscillation. It happens that this frequency band is close to that which are spontaneously produced by postural sway during natural stance. This study examined the relationship between reported susceptibility to motion sickness and postural control. The hypothesis is that the level of MS can be inferred from the shape of the Power Spectral Density (PSD) profile of spontaneous sway, as measured by the displacement of the center of mass during stationary, upright stance. In Experiment 1, postural fluctuations while standing quietly were related to MS history for inertial motion. In Experiment 2, postural stability measures registered before the onset of a visual roll movement were related to MS symptoms following the visual stimulation. Study of spectral characteristics in postural control showed differences in the distribution of energy along the power spectrum of the antero-posterior sway signal. Participants with MS history provoked by exposure to inertial motion showed a stronger contribution of the high frequency components of the sway signal. When MS was visually triggered, sick participants showed more postural sway in the low frequency range. The results suggest that subject-specific PSD details may be a predictor of the MS level. Furthermore, the analysis of the sway frequency spectrum provided insight into the intersubject differences in the use of postural control subsystems. The relationship observed between MS susceptibility and spontaneous posture is discussed in terms of postural sensory weighting and in relation to the nature of the provocative stimulus.  相似文献   

14.
Several studies have examined postural control in dyslexic children; however, their results were inconclusive. This study investigated the effect of a dual task on postural stability in dyslexic children. Eighteen dyslexic children (mean age 10.3±1.2 years) were compared with eighteen non-dyslexic children of similar age. Postural stability was recorded with a platform (TechnoConcept®) while the child, in separate sessions, made reflex horizontal and vertical saccades of 10° of amplitude, and read a text silently. We measured the surface and the mean speed of the center of pressure (CoP). Reading performance was assessed by counting the number of words read during postural measures. Both groups of children were more stable while performing saccades than while reading a text. Furthermore, dyslexic children were significantly more unstable than non-dyslexic children, especially during the reading task. Finally, the number of words read by dyslexic children was significantly lower than that of non-dyslexic children and, in contrast to the non-dyslexic children. In line with the U-shaped non-linear interaction model, we suggest that the attention consumed by the reading task could be responsible for the loss of postural control in both groups of children. The postural instability observed in dyslexic children supports the hypothesis that such children have a lack of integration of multiple sensorimotor inputs.  相似文献   

15.

Background

This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing.

Methods

Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials.

Findings

(1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity.

Interpretation

Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities.  相似文献   

16.
The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing.  相似文献   

17.
Postural control strategies can be investigated by kinematic analysis of joint movements. However, current research is focussing mainly on the analysis of centre of pressure excursion and lacks consensus on how to assess joint movement during postural control tasks. This study introduces a new signal processing technique to comprehensively quantify joint sway during standing and evaluates its reproducibility. Fifteen patients with non-specific low back pain and ten asymptomatic participants performed three repetitions of a 60-second standing task on foam surface. This procedure was repeated on a second day. Lumbar spine movement was recorded using an inertial measurement system. The signal was temporally divided into six sections. Two outcome variables (mean absolute sway and sways per second) were calculated for each section. The reproducibility of single and averaged measurements was quantified with linear mixed-effects models and the generalizability theory. A single measurement of ten seconds duration revealed reliability coefficients of .75 for mean absolute sway and .76 for sways per second. Averaging a measurement of 40 seconds duration on two different days revealed reliability coefficients higher than .90 for both outcome variables. The outcome variables’ reliability compares favourably to previously published results using different signal processing techniques or centre of pressure excursion. The introduced signal processing technique with two outcome variables to quantify joint sway during standing proved to be a highly reliable method. Since different populations, tasks or measurement tools could influence reproducibility, further investigation in other settings is still necessary. Nevertheless, the presented method has been shown to be highly promising.  相似文献   

18.
The purpose of this study was to determine the effect of a 4-week balance training program on specified functional tasks. Thirty-six subjects (age = 22.7 +/- 2.10 years; height = 168.30 +/- 9.55 cm; weight = 71.15 +/- 16.40 kg) were randomly placed into control (C; n = 19) and experimental groups (Tx; n = 17). The Tx group trained using a commercially available balance training device (BOSU). Postural limits (displacement and sway) and functional task (time on ball, shuttle run, and vertical jump) were assessed during a pretest (T1), a posttest (T2), and 2 weeks posttraining (T3). Multivariate repeated measures analysis (alpha = 0.05) revealed significant differences in time on ball, shuttle run, total sway, and fore/aft displacement after the exercise intervention (T2). T3 assessment revealed that total sway and time on ball remained controlled; however, no other measures were retained. Balance training improved performance of selected sport-related activities and postural control measures, although it is unclear whether the effect of training would transfer to general functional enhancement.  相似文献   

19.
Oh J  Han M  Peterson BS  Jeong J 《PloS one》2012,7(4):e34871
The timing and frequency of spontaneous eyeblinking is thought to be influenced by ongoing internal cognitive or neurophysiological processes, but how precisely these processes influence the dynamics of eyeblinking is still unclear. This study aimed to better understand the functional role of eyeblinking during cognitive processes by investigating the temporal pattern of eyeblinks during the performance of attentional tasks. The timing of spontaneous eyeblinks was recorded from 28 healthy subjects during the performance of both visual and auditory versions of the Stroop task, and the temporal distributions of eyeblinks were estimated in relation to the timing of stimulus presentation and vocal response during the tasks. We found that the spontaneous eyeblink rate increased during Stroop task performance compared with the resting rate. Importantly, the subjects (17/28 during the visual Stroop, 20/28 during the auditory Stroop) were more likely to blink before a vocal response in both tasks (150-250 msec) and the remaining subjects were more likely to blink soon after the vocal response (200-300 msec), regardless of the stimulus type (congruent or incongruent) or task difficulty. These findings show that spontaneous eyeblinks are closely associated with responses during the performance of the Stroop task on a short time scale and suggest that spontaneous eyeblinks likely signal a shift in the internal cognitive or attentional state of the subjects.  相似文献   

20.
The Stroop and stop-signal tasks are commonly used to index prepotent response inhibition in studies of cognitive development and individual differences. Inhibitory measures from the two tasks have been derived using a variety of methods. Findings of low inter-correlations amongst these measures have been interpreted as evidence for different kinds of inhibitory functions. Our previous study found Stroop and stop-signal accuracy measures to be uncorrelated and they loaded on different inhibitory components in a principal component analysis. The present study examined whether this finding is replicated across different task contexts, derived measures, and methods of derivation. Adolescents (N = 247) were administered a number-quantity Stroop and word and number stop-signal tasks. For each stop-signal task, inhibitory efficiency was estimated using a stop-signal reaction time measure estimated with the central versus the integration methods. For the Stroop interference task, inhibitory efficiency was indexed by reaction time measures (including inverse efficiency scores) generated from difference scores and regression residuals, and delta-plot slopes. The reaction time measures from the two tasks were generally not correlated. The only exception was that Stroop inhibitory ability, indexed by Stroop errors, was related to stop-signal inhibitory efficiency, indexed by stop-signal reaction time. These findings are consistent with previous findings suggesting that measures from the Stroop and stop-signal tasks are influenced by different underlying processes. The impact of variations in dependent measure derivation on the resulting reliabilities of Stroop and stop-signal measures and on observed correlations between them were examined. Variables that may have contributed to the null findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号