首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
8-prenylnaringenin (8-PN) and preparations containing 8-prenylnaringenin have been suggested for use in medicinal and cosmetic applications like hormone replacement or bust enhancement. However, the safety of application is still under considerable debate. Recently it has been shown that human liver microsomes are converting 8-prenylnaringenin to 12 metabolites, with (E)-8-(4'-hydroxyisopentenyl)naringenin (8-PN-OH) and (E)-8-(4'-oxoisopentenyl)naringenin (8-PN=O) being among the most abundant. Applying two independent in vitro test systems we demonstrate that these two metabolites of 8-prenylnaringenin are estrogenic in vitro. These results represent an important piece of information towards the discussion of safety of use of preparations containing 8-prenylnaringenin.  相似文献   

2.
Using the whole-cell patch-clamp technique, we investigated the influence of 8-prenylnaringenin on the activity of the voltage-gated Kv1.3 potassium channels in the human leukemic T lymphocyte cell line Jurkat. 8-prenylnaringenin is a potent plant-derived phytoestrogen that has been found to inhibit cancer cell proliferation. The results show that it inhibited the Kv1.3 channels in a concentration-dependent manner. Complete inhibition occurred at concentrations higher than 10 ??M. The inhibitory effect of 8-prenylnaringenin was reversible. It was accompanied by a significant acceleration of channel inactivation without any pronounced change in the activation rate. Of the naringenin derivatives tested to date, 8-prenylnaringenin is the most potent inhibitor of the Kv1.3 channels. The potency of the inhibition may be due to the presence of a prenyl group in the molecule of this flavonoid. The inhibition of the Kv1.3 channels might be involved in the antiproliferative and pro-apoptotic effects of 8-prenylnaringenin that have been observed in cancer cell lines expressing these channels.  相似文献   

3.
8-Prenylnaringenin is a recently discovered phytoestrogen. Using an in vitro model of angiogenesis in which endothelial cells can be induced to invade a three-dimensional collagen gel within which they form capillary-like tubes, we demonstrate that 8-prenylnaringenin inhibits angiogenesis induced by basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), or the synergistic effect of the two cytokines in combination, with an IC(50) of between 3 and 10 microM. This effect was seen with bovine microvascular endothelial cells derived from the adrenal cortex (BME cells) and with endothelial cells from the bovine thoracic aorta (BAE cells). The inhibitory effects of 8-prenylnaringenin were found to be roughly equipotent to those of genistein that has previously been shown to inhibit angiogenesis in vitro. Early chorioallantoic membrane (CAM) assay results showed reductions in both vessel lengths and vein diameters, with similar potency in the 8-prenylnaringenin and genistein groups. Similar effects on the CAM vessels were seen when the two substances were co-added. These findings suggest that 8-prenylnaringenin has potential therapeutic applications for diseases in which angiogenesis is an important component.  相似文献   

4.
Stevens JF  Page JE 《Phytochemistry》2004,65(10):1317-1330
Xanthohumol (3'-[3,3-dimethyl allyl]-2',4',4-trihydroxy-6'-methoxychalcone) is the principal prenylated flavonoid of the female inflorescences of the hop plant ('hops'), an ingredient of beer. Human exposure to xanthohumol and related prenylflavonoids, such as 8-prenylnaringenin and isoxanthohumol, is primarily through beer consumption. Xanthohumol has been characterized a 'broad-spectrum' cancer chemopreventive agent in in vitro studies, while 8-prenylnaringenin enjoys fame as the most potent phytoestrogen known to date. These biological activities suggest that prenylflavonoids from hops have potential for application in cancer prevention programs and in prevention or treatment of (post-)menopausal 'hot flashes' and osteoporosis. Xanthohumol and 8-prenylnaringenin are metabolized into many flavonoid derivatives with modified 3,3-dimethyl allyl (prenyl) moieties. Xanthohumol is formed in lupulin glands by a specialized branch of flavonoid biosynthesis that involves prenylation and O-methylation of the polyketide intermediate chalconaringenin. Although a lupulin gland-specific chalcone synthase is known, the aromatic prenyltransferase and O-methyltransferase participating in xanthohumol have not been identified. The prenylflavonoid pathway is a possible target for breeding or biotechnological modification of hops with the aim of increasing xanthohumol levels for beer brewing and 8-prenylnaringenin levels for pharmaceutical production.  相似文献   

5.
Ten flavonoid compounds, including three new natural products, were isolated from a dichloromethane extract of Wyethia glabra. The known compounds are: orobol 7-methyl ether, orobol 3′-methyl ether, naringenin 7-methyl ether, eriodictyol, 8-C-prenyleriodictyol, 6-C-prenyleriodictyol and 8-C-prenylnaringenin. Eriodictyol 7-methyl ether, 2′,4′,6′-trihydroxy-4-methoxychalcone and 6-C-prenylnaringenin are new natural products. An additional prenylated flavanone was isolated and partially characterized.  相似文献   

6.
Prenylflavonoids are an unique class of phytochemicals found in the inflorescences of the hop plant (Humulus lupulus). These flavonoids have demonstrated a wide range of biological activities, which may be influenced by their stereochemical configuration. Additionally, recent studies suggest that hop prenylflavonoids are subject to biotransformations which could alter or enrich their stereochemistry. In order to facilitate studies of the stereoisomers of flavanones, a facile method was developed for resolving the diastereomeric esters of flavanones via reversed-phase HPLC. Herein, a method for forming the tri-(1S)-(-)-camphanic acid esters of the 4',5,7-trihydroxy flavanones naringenin, 8-prenylnaringenin and 6-prenylnaringenin, is described. The respective diastereomers were separated using analytical reversed-phase HPLC. Diastereomeric esters were isolated by preparative HPLC to >98% d.e. based on HPLC, with their absolute configurations established by application of CD spectrometry.  相似文献   

7.
Zhao P  Hamada C  Inoue K  Yamamoto H 《Phytochemistry》2003,62(7):1093-1099
It has previously been demonstrated that the addition of cork tissue to cell suspension cultures of Sophora flavescens stimulates the production of sophoraflavanone G, most of which has been recovered from the added cork tissue. In the present study, it was found that two precursors of sophoraflavanone G, 8-prenylnaringenin (sophoraflavanone B) and leachianone G, both of which have never been detected either in cultured cells or in the original plants, also accumulated in the added cork tissue. Thirteen minor flavonoids including three prenylated flavonoids, in addition to 8-prenylnaringenin and leachianone G, were isolated from the cork tissue co-incubated with S. flavescens cells. The new compounds flavescenones A, B and C, were determined to be (3R)-5, 7, 2'-trihydroxy-6-gamma, gamma-dimethylallyl-4', 5'-methylenedioxyisoflavanone; 5, 7, 2'-trihydroxy-6-gamma, gamma-dimethylallyl-4', 5'-methylenedioxyisoflavone and 2-[2',4'-dihydroxy-3'-(gamma-hydroxymethyl-gamma-methylallyl)phenyl]-5,6-methylenedioxybenzofuran, respectively, by means of spectroscopic analyses that included 2D-NMR techniques.  相似文献   

8.
Previous studies have compared the oestrogenic properties of phytoestrogens in a wide variety of disparate assays. Since not all phytoestrogens have been tested in each assay, this makes inter-study comparisons and ranking oestrogenic potency difficult. In this report, we have compared the oestrogen agonist and antagonist activity of eight phytoestrogens (genistein, daidzein, equol, miroestrol, deoxymiroestrol, 8-prenylnaringenin, coumestrol and resveratrol) in a range of assays all based within the same receptor and cellular context of the MCF7 human breast cancer cell line. The relative binding of each phytoestrogen to oestrogen receptor (ER) of MCF7 cytosol was calculated from the molar excess needed for 50% inhibition of 3H]oestradiol binding (IC50), and was in the order coumestrol (35x)/8-prenylnaringenin (45x)/deoxymiroestrol (50x)>miroestrol (260x)>genistein (1000x)>equol (4000x)>daidzein (not achieved: 40% inhibition at 10(4)-fold molar excess)>resveratrol (not achieved: 10% inhibition at 10(5)-fold molar excess). For cell-based assays, the rank order of potency (estimated in terms of the concentration needed to achieve a response equivalent to 50% of that found with 17beta-oestradiol (IC50)) remained very similar for all the assays whether measuring ligand ability to induce a stably transfected oestrogen-responsive ERE-CAT reporter gene, cell growth in terms of proliferation rate after 7 days or cell growth in terms of saturation density after 14 days. The IC50 values for these three assays in order were for 17beta-oestradiol (1 x 10(-11)M, 1 x 10(-11)M, 2 x 10(-11)M), and in rank order of potency for the phytoestrogens, deoxymiroestrol (1 x 10(-10)M, 3 x 10(-11)M, 2 x 10(-11)M)>miroestrol (3 x 10(-10)M, 2 x 10(-10)M, 8 x 10(-11)M)>8-prenylnaringenin (1 x 10(-9)M, 3 x 10(-10)M, 3 x 10(-10)M)>coumestrol (3 x 10(-8)M, 2 x 10(-8)M, 3 x 10(-8)M)>genistein (4 x 10(-8)M, 2 x 10(-8)M, 1 x 10(-8)M)/equol (1 x 10(-7)M, 3 x 10(-8)M, 2 x 10(-8)M)>daidzein (3 x 10(-7)M, 2 x 10(-7)M, 4 x 10(-8)M)>resveratrol (4 x 10(-6)M, not achieved, not achieved). Despite using the same receptor context of the MCF7 cells, this rank order differed from that determined from receptor binding. The most marked difference was for coumestrol and 8-prenylnaringenin which both displayed a relatively potent ability to displace [3H]oestradiol from cytosolic ER compared with their much lower activity in the cell-based assays. Albeit at varying concentrations, seven of the eight phytoestrogens (all except resveratrol) gave similar maximal responses to that given by 17beta-oestradiol in cell-based assays which makes them full oestrogen agonists. We found no evidence for any oestrogen antagonist action of any of these phytoestrogens at concentrations of up to 10(-6)M on either reporter gene induction or on stimulation of cell growth.  相似文献   

9.
Hop flavonoids are being regarded as attractive molecules to prevent or treat certain forms of cancer. Studies have focused mainly on xanthohumol, the most abundant prenylated chalcone existing in hops extract. However, during the production of beer, or after its ingestion, xanthohumol originates different metabolites, among which isoxanthohumol and 8-prenylnaringenin. The aim of this work was to study the effect of the prenylflavonoids xanthohumol, isoxanthohumol and 8-prenylnaringenin on the breast cancer Sk-Br-3 cell line proliferation, apoptosis and activity of the enzyme aromatase (estrogen synthase). Aromatase activity was determined by a tritiated water assay, cell proliferation was assessed by [3H]thymidine incorporation, sulforhodamine B protein measurement and Ki-67 immunostaining and apoptosis was determined by TUNEL. Our results show that all tested prenylflavonoids were able to inhibit aromatase activity and thus, estrogen formation. Additionally, breast cancer cell line proliferation was decreased and apoptosis induced by all three compounds. The presence of 17β-estradiol in treatment medium was able to revert the effect of the prenylflavonoids on cellular proliferation. These observations strengthen the idea that hop flavonoids may have anti-breast cancer effects and shed new light on a possible mechanism of action by which these effects occur, namely through their ability to decrease estrogen synthesis.  相似文献   

10.
Chalcones xanthohumol (X) and desmethylxanthohumol (DMX), present in hops (Humulus lupulus L.), and the corresponding flavanones isoxanthohumol (IX, from X), 8-prenylnaringenin (8-PN, from DMX), and 6-prenylnaringenin (6-PN, from DMX), have been examined in vitro for their anti-proliferative activity on human prostate cancer cells PC-3 and DU145. X proved to be the most active compound in inhibiting the growth of the cell lines with IC50 values of 12.3±1.1 μM for DU145 and 13.2±1.1 μM for PC-3. 6-PN was the second most active growth inhibitor, particularly in PC-3 cells (IC50 of 18.4±1.2 μM). 8-PN, a highly potent phytoestrogen, exhibited pronounced anti-proliferative effects on PC-3 and DU145 (IC50 of 33.5±1.0 and 43.1±1.2 μM, respectively), and IX gave comparable activities (IC50 of 45.2±1.1 μM for PC-3 and 47.4±1.1 μM for DU145). DMX was the least active compound. It was evidenced for the first time that this family of prenylated flavonoids from hops effectively inhibits proliferation of prostate cancer cells in vitro.  相似文献   

11.
12.
The E-cadherin/catenin complex is a powerful invasion suppressor in epithelial cells. It is expressed in the human MCF-7 breast cancer cell line family, but functionally defective in the invasive MCF-7/6 variant. Previous experiments have shown that IGF-I, tamoxifen, retinoic acid and tangeretin are able to upregulate the function of this complex in MCF-7/6 cells. We investigated the effect of 8-prenylnaringenin (8-PN), the phytoestrogen present in hops and beer, on aggregation, growth and invasion in MCF-7/6 cells. 8-PN was found to stimulate E-cadherin-dependent aggregation and growth of MCF-7/6 cells in suspension. These effects could be inhibited by the pure anti-estrogen ICI 182,780. 8-PN did not affect invasion of MCF-7/6 cells in the chick heart assay in vitro. In all these aspects 8-PN mimics the effects of 17beta-estradiol on MCF-7/6 cells.  相似文献   

13.
Plant secondary metabolites with estrogenic activity (phyto-estrogens) have been studied in the past as a potential alternative to classical hormone-replacement therapy (HRT) in menopausal women. No final verdict on the efficacy of soy or red clover based pharmaceutical preparations has been reached despite numerous clinical studies. We have studied the novel and most potent phyto-estrogen 8-prenylnaringenin (8-PN) in adult ovariectomized rats, an established animal model to mimic hormone dependent osteoporosis in menopausal women. Our results demonstrate that 8-PN can completely protect from ovariectomy induced bone-loss while exhibiting minimal, (dose independent) trophic effects on uterus and endometrium. It is estimated that at equivalent bone protective doses of 17beta-estradiol and 8-PN, the phyto-estrogen has a 10-fold lower stimulatory effect on uterus and endometrium. The bone tissue specific effect of 8-PN was confirmed in a transgenic reporter mouse model (ERE-Luc mice). Here we also found pronounced estrogenic activity in prostate. Present results add important aspects to the pharmacological profile of 8-PN and position this compound as an interesting alternative new candidate for treatment of peri- and postmenopausal symptoms.  相似文献   

14.
15.
《Phytochemistry》1986,25(7):1723-1726
Seventeen flavonoids, including seven new natural products, were isolated from a dichloromethane extract of Wyethia angustifolia. Known compounds are:8-C-prenyleriodictyol, 6-C-prenyleriodictyol, 8-C-prenylnaringenin, 6-C-prenylnaringenin, orobol 7-methyl ether, orobol 3′-methyl ether, naringenin 4′-methyl ether, orobol, eriodictyol and naringenin. The new compounds are 6-C-prenylorobol, 6-C-prenylorobol 3′-methyl ether, orobol 7,3′-dimethyl ether, 8-C-prenyldihydroisorhamnetin, 7,8-dihydrooxepinocriodictyol, 7,8-dihydrooxepinodihydroquercetin and 3′,4′-dihydrooxepino-6′-hydroxybutein. A dichloromethane extract of Wyethia heleniodes yielded eleven compounds only five of which were previously reported from the species. All these compounds appear to occur on the leaf surface.  相似文献   

16.
The estrogenic activity of several intermediary plant compounds has raised concern about possible risks of unwanted interference with endocrine regulation, but on the other hand there are potential medical benefits, in particular in treatment of menopausal symptoms or cancer. In the present study, we compare the estrogenic effects of phytoestrogens naringenin, 8-prenylnaringenin, 6-(1,1-dimethylallyl)naringenin, and the synthetic 4'-acetyl-7-prenyloxynaringenin. Two mammalian in vitro systems and a fish in vivo system were used to study the estrogenic properties with reference to genistein, 17-beta-estradiol or ethynylestradiol. Strong differences were observed between the mammalian in vitro and the fish in vivo test system. In the medaka sex reversal/vtg gene expression assay no estrogenic effects of the naringenin-type flavonoids were observed, while mammalian in vitro systems showed a similar and graded response to the test compounds.  相似文献   

17.
The increased cancer risk associated with hormone therapies has encouraged many women to seek non-hormonal alternatives including botanical supplements such as hops (Humulus lupulus) and licorice (Glycyrrhiza spec.) to manage menopausal symptoms. Previous studies have shown estrogenic properties for hops, likely due to the presence of 8-prenylnarigenin, and chemopreventive effects mainly attributed to xanthohumol. Similarly, a combination of estrogenic and chemopreventive properties has been reported for various Glycyrrhiza species. The major goal of the current study was to evaluate the potential estrogenic effects of three licorice species (Glycyrrhiza glabra, G. uralensis, and G. inflata) in comparison with hops. Extracts of Glycyrrhiza species and spent hops induced estrogen responsive alkaline phosphatase activity in endometrial cancer cells, estrogen responsive element (ERE)-luciferase in MCF-7 cells, and Tff1 mRNA in T47D cells. The estrogenic activity decreased in the order H. lupulus > G. uralensis > G. inflata > G. glabra. Liquiritigenin was found to be the principle phytoestrogen of the licorice extracts; however, it exhibited lower estrogenic effects compared to 8-prenylnaringenin in functional assays. Isoliquiritigenin, the precursor chalcone of liquiritigenin, demonstrated significant estrogenic activities while xanthohumol, a metabolic precursor of 8-prenylnaringenin, was not estrogenic. Liquiritigenin showed ERβ selectivity in competitive binding assay and isoliquiritigenin was equipotent for ER subtypes. The estrogenic activity of isoliquiritigenin could be the result of its cyclization to liquiritigenin under physiological conditions. 8-Prenylnaringenin had nanomolar estrogenic potency without ER selectivity while xanthohumol did not bind ERs. These data demonstrated that Glycyrrhiza species with different contents of liquiritigenin have various levels of estrogenic activities, suggesting the importance of precise labeling of botanical supplements. Although hops shows strong estrogenic properties via ERα, licorice might have different estrogenic activities due to its ERβ selectivity, partial estrogen agonist activity, and non-enzymatic conversion of isoliquiritigenin to liquiritigenin.  相似文献   

18.
The lack of a safe and reliable alternative to hormone therapy (HT) for treating menopausal symptoms underscores the need for alternative therapies. OBJECTIVE: The purpose of this study was to assess the in vivo estrogenic effects of the botanical dietary supplements Trifolium pratense (red clover) and Humulus lupulus (hops), and two compounds obtained from H. lupulus, isoxanthohumol and 8-prenylnaringenin (8-PN) using the ovariectomized uterotrophic adult rat model. A H. lupulus extract and a 30% isoflavone extract of T. pratense were tested at three escalating doses as was one dose of isoxanthohumol for 21d. 8-Prenylnaringenin, the major estrogen in H. lupulus, was also tested at three relevant escalating doses. In order to determine the in vivo metabolism of 8-PN, the major phases I and II metabolites were also identified. The primary outcome measure, uterus weight gain, indicated that H. lupulus and T. pratense did not have an estrogenic effect on the uterus, and none of the secondary outcome measures were positive. In contrast, there was a clear dose response when 8-PN was evaluated where the middle and high doses of 8-PN were active. 8-Prenylnaringenin in rat plasma, liver, and mammary gland was measured and the major phases I and II 8-PN metabolites were detected. Our findings suggest that while both the H. lupulus and T. pratense extracts do not have an effect on the rat uterus, 8-PN at equivalent doses to those previously used in humans did have an effect, and may therefore have a deleterious effect in women.  相似文献   

19.
Xanthohumol (XN), a prenylated chalcone unique to hops (Humulus lupulus) and two derived prenylflavanones, isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) gained increasing attention as potential anti-diabetic and cancer preventive compounds. Two enzymes of the aldo-keto reductase (AKR) superfamily are notable pharmacological targets in cancer therapy (AKR1B10) and in the treatment of diabetic complications (AKR1B1). Our results show that XN, IX and 8-PN are potent uncompetitive, tight-binding inhibitors of human aldose reductase AKR1B1 (Ki?=?15.08?μM, 0.34?μM, 0.71?μM) and of human AKR1B10 (Ki?=?20.11?μM, 2.25?μM, 1.95?μM). The activity of the related enzyme AKR1A1 was left unaffected by all three compounds. This is the first time these three substances have been tested on AKRs. The results of this study may provide a basis for further quantitative structure–activity relationship models and promising scaffolds for future anti-diabetic or carcinopreventive drugs.  相似文献   

20.
Beauveria bassiana AM278 and Absidia coerulea AM93 converted 8-prenylnaringenin (1) into two glycoside derivatives (7-O-β-d-glucopyranoside) (2) and 7-O-β-d-4?-O-methylglucopyranoside) (3) in high yields in processes conducted in Saboraud medium. 8-Prenylnaringenin 7-O-β-d-4?-O-methylglucopyranoside (3) is a new compound. 8-Prenylnaringenin-7-sulfate (4) was obtained in transformation of 1 by Absidia coerulea AM93 in a buffer. Formation of conjugated products in this study proceeds in a manner analogous to mammalian systems which indicates the potential use of microbes to mimic mammalian metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号