首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breton S  Burger G  Stewart DT  Blier PU 《Genetics》2006,172(2):1107-1119
Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: "standard" M genomes and "recently masculinized" M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.  相似文献   

2.
Mitochondrial (mt) function depends critically on optimal interactions between components encoded by mt and nuclear DNAs. mitochondrial DNA (mtDNA) inheritance (SMI) is thought to have evolved in animal species to maintain mito-nuclear complementarity by preventing the spread of selfish mt elements thus typically rendering mtDNA heteroplasmy evolutionarily ephemeral. Here, we show that mtDNA intraorganismal heteroplasmy can have deterministic underpinnings and persist for hundreds of millions of years. We demonstrate that the only exception to SMI in the animal kingdom, that is, the doubly uniparental mtDNA inheritance system in bivalves, with its three-way interactions among egg mt-, sperm mt- and nucleus-encoded gene products, is tightly associated with the maintenance of separate male and female sexes (dioecy) in freshwater mussels. Specifically, this mother-through-daughter and father-through-son mtDNA inheritance system, containing highly differentiated mt genomes, is found in all dioecious freshwater mussel species. Conversely, all hermaphroditic species lack the paternally transmitted mtDNA (=possess SMI) and have heterogeneous macromutations in the recently discovered, novel protein-coding gene (F-orf) in their maternally transmitted mt genomes. Using immunoelectron microscopy, we have localized the F-open reading frame (ORF) protein, likely involved in specifying separate sexes, in mitochondria and in the nucleus. Our results support the hypothesis that proteins coded by the highly divergent maternally and paternally transmitted mt genomes could be directly involved in sex determination in freshwater mussels. Concomitantly, our study demonstrates novel features for animal mt genomes: the existence of additional, lineage-specific, mtDNA-encoded proteins with functional significance and the involvement of mtDNA-encoded proteins in extra-mt functions. Our results open new avenues for the identification, characterization, and functional analyses of ORFs in the intergenic regions, previously defined as "noncoding," found in a large proportion of animal mt genomes.  相似文献   

3.
Bivalve species are characterized by extraordinary variability in terms of mitochondrial (mt) genome size, gene arrangement and tRNA gene number. Many species are thought to lack the mitochondrial protein-coding gene atp8. Of these species, the Mytilidae appears to be the only known taxon with doubly uniparental inheritance of mtDNA that does not possess the atp8 gene. This raises the question as to whether mytilids have completely lost the ATP8 protein, whether the gene has been transferred to the nucleus or whether they possess a highly modified version of the gene/protein that has led to its lack of annotation. In the present study, we re-investigated all complete (or nearly complete) F and M mytilid mt genomes previously sequenced for the presence of conserved open reading frames (ORFs) that might code for ATP8 and/or have other functional importance in these bivalves. We also revised the annotations of all available complete mitochondrial genomes of bivalves and nematodes that are thought to lack atp8 in an attempt to detect it. Our results indicate that a novel mytilid ORF of significant length (i.e., the ORF is >85 amino acids in length), with complete start and stop codons, is a candidate for the atp8 gene: (1) it possesses a pattern of evolution expected for a protein-coding gene evolving under purifying selection (i.e., the 3rd>1st>2nd codon pattern of evolution), (2) it is actively transcribed in Mytilus species, (3) it has one predicted transmembrane helix (as do other metazoan ATP8 proteins), (4) it has conserved functional motifs and (5), comparisons of its amino acid sequence with ATP8 sequences of other molluscan or bivalve species reveal similar hydropathy profiles. Furthermore, our revised annotations also confirmed the mt presence of atp8 in almost all bivalve species and in one nematode species. Our results thus support recognizing the presence of ATPase 8 in most bivalves mt genomes (if not all) rather than the continued characterization of these genomes as lacking this gene.  相似文献   

4.

Background  

Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata).  相似文献   

5.
Doubly uniparental inheritance (DUI) is an exception to the typical maternal inheritance of mitochondrial (mt) DNA in Metazoa, and found only in some bivalves. In species with DUI, there are two highly divergent gender-associated mt genomes: maternal (F) and paternal (M), which transmit independently and show different tissue localization. Solenaia carinatus is an endangered freshwater mussel species exclusive to Poyang Lake basin, China. Anthropogenic events in the watershed greatly threaten the survival of this species. Nevertheless, the taxonomy of S. carinatus based on shell morphology is confusing, and the subfamilial placement of the genus Solenaia remains unclear. In order to clarify the taxonomic status and discuss the phylogenetic implications of family Unionidae, the entire F and M mt genomes of S. carinatus were sequenced and compared with the mt genomes of diverse freshwater mussel species. The complete F and M mt genomes of S. carinatus are 16716 bp and 17102 bp in size, respectively. The F and M mt genomes of S. carinatus diverge by about 40% in nucleotide sequence and 48% in amino acid sequence. Compared to F counterparts, the M genome shows a more compact structure. Different gene arrangements are found in these two gender-associated mt genomes. Among these, the F genome cox2-rrnS gene order is considered to be a genome-level synapomorphy for female lineage of the subfamily Gonideinae. From maternal and paternal mtDNA perspectives, the phylogenetic analyses of Unionoida indicate that S. carinatus belongs to Gonideinae. The F and M clades in freshwater mussels are reciprocal monophyly. The phylogenetic trees advocate the classification of sampled Unionidae species into four subfamilies: Gonideinae, Ambleminae, Anodontinae, and Unioninae, which is supported by the morphological characteristics of glochidia.  相似文献   

6.
Ma PF  Guo ZH  Li DZ 《PloS one》2012,7(1):e30297

Background

Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change.

Methodology/Principal Findings

We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses.

Conclusions/Significance

Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.  相似文献   

7.
Many bivalvian mollusks have a sperm-transmitted mitochondrial genome (M), along with the standard egg-transmitted one (F). The phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, is the only known case in which biparental inheritance of a cytoplasmic genome is the rule rather than the exception. In the mussel Mytilus sperm mitochondria disperse randomly among blastomeres in female embryos, but form an aggregate and stay in the same blastomere in male embryos. In adults, somatic tissues of both sexes are dominated by the F genome. Sperm contains only the M genome and eggs the F (and perhaps traces of M). A female produces mostly daughters, mostly sons, or both sexes in about equal numbers, irrespective of its mate. Thus maleness and M mtDNA fate are tightly linked and under maternal control. Hybridization and triploidization affect the former but not the latter, which suggests that the two are not causally linked. Gene content and arrangement are the same in conspecific F and M genomes, but primary sequence has diverged from 20 % to 40 %, depending on species. The two genomes differ at the control region (CR). Synonymous substitutions accumulate faster in the M than the F genome and non-synonymous even faster. Expression studies indicate that the M genome is active only at spermatogenesis. These observations suggest that the M genome is under a more relaxed selective constraint than the F. Some mytilid species carry, in low frequencies, sperm-transmitted mtDNAs whose primary sequence is of the F type and the CR is an F/M mosaic (“masculinized” genomes). In venerids sperm mitochondria behavior, M genome fate and sex determination are as in mytilids. In unionids the M genome also evolves faster than the F and F/M sequence divergence reaches 50 %. The identification of F-specific and M-specific open reading frames in non-coding regions of unionids and mytilids, in conjunction with the CR’s mosaic structure of masculinized genomes, suggest that the mitochondrial genomes of species with DUI carry sequences that affect their transmission route. A model that incorporates these findings is presented in this review.  相似文献   

8.
Distinct gender-associated mitochondrial DNA (mtDNA) lineages (i.e., lineages which are transmitted either through males or through females) have been demonstrated in two families of bivalves, the Mytilidae (marine mussels) and the Unionidae (freshwater mussels), which have been separated for more than 400 Myr. The mode of transmission of these M (for male-transmitted) and F (for female-transmitted) molecules has been referred to as doubly uniparental inheritance (DUI), in contrast to standard maternal inheritance (SMI), which is the norm in animals. A previous study suggested that at least three origins of DUI are required to explain the phylogenetic pattern of M and F lineages in freshwater and marine mussels. Here we present phylogenetic evidence based on partial sequences of the cytochrome c oxidase subunit I gene and the 16S RNA gene that indicates the DUI is a dynamic phenomenon. Specifically, we demonstrate that F lineages in three species of Mytilus mussels, M. edulis, M. trossulus, and M. californianus, have spawned separate lineages which are now associated only with males. This process is referred to as "masculinization" of F mtDNA. By extension, we propose that DUI may be a primitive bivalve character and that periodic masculinization events combined with extinction of previously existing M types effectively reset the time of divergence between conspecific gender-associated mtDNA lineages.   相似文献   

9.
Abstract.— Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) has been demonstrated in both mytilid and unionid bivalves. Under DUI, females pass on their mtDNA to both sons and daughters, whereas males pass on their mtDNA to only sons. In mytilids, the loss of an original male (or M) mitotype, with its subsequent replacement by that lineage's female (or F) mitotype, has been called a role-reversal or, more specifically, a masculinization event. Multiple masculinization events have been inferred during the evolutionary history of mytilids but not unionids. The perceived lack of role-reversal events in unionids may represent a significant difference in the evolutionary dynamics of DUI between the two bivalve taxa or simply a lack of sufficient taxon sampling in unionids. To evaluate these alternative hypotheses, six additional unionoidean bivalve genera were sampled for DUI including one genus from the sister taxon of the Unionidae, the Hyriidae. Phylogenetic analyses of 619 base pairs of cytochrome c oxidase I (COI) from eight genera (nine species) of unionoidean bivalves, plus the sister taxon to the Unionoida, Neotrigonia , revealed that the M and F unionoidean mitotypes were contained in gender-specific, topologically congruent clades. This supports the hypothesis that either role-reversal events do not occur in unionoideans or, if they do occur, their products are ephemeral in an evolutionary sense. Furthermore, the fact that the mantle-tissue-derived Neotrigonia mitotype is the sister mitotype to the unionoidean F mitotype clade suggests that DUI has been operating with high fidelity in unionoids for at least 200 million years. A relatively low incidence of interspecific hybridization in unionoideans and a possibly obligate role for the M mitotype in unionoidean gender determination are offered as potential explanations for the disparate evolutionary dynamics of DUI observed between mytilid and unionoidean bivalves.  相似文献   

10.

Background

In marine mussels of the genus Mytilus there are two mitochondrial genomes. One is transmitted through the female parent, which is the normal transmission route in animals, and the other is transmitted through the male parent which is an unusual phenomenon. In males the germ cell line is dominated by the paternal mitochondrial genome and the somatic cell line by the maternal. Research to date has not allowed a clear answer to the question of whether inheritance of the paternal genome is causally related to maleness.

Methodology/Principal Findings

Here we present results from hybrid crosses, from triploid mussels and from observations of sperm mitochondria in fertilized eggs which clearly show that maleness and presence of the paternal mitochondrial genome can be decoupled. These same results show that the female mussel has exclusive control of whether her progeny will inherit the mitochondrial genome of the male parent.

Conclusions/Significance

These findings are important in our efforts to understand the mechanistic basis of this unusual mode of mitochondrial DNA inheritance that is common among bivalves.  相似文献   

11.
Zbawicka M  Burzyński A  Wenne R 《Gene》2007,406(1-2):191-198
Marine mussels Mytilus possess two mitochondrial (mt) genomes, which undergo doubly uniparental inheritance (DUI). Female (F) and male (M) genomes are usually highly diverged at the sequence level. Both genomes contain the same set of metazoan genes (for 12 proteins, 2 rRNAs and 23 tRNAs), both lack the atp8 gene and have two tRNAs for methionine. However, recently recombination between those variants has been reported. Both original F and M mt genomes of M. trossulus were replaced by M. edulis mtDNA in the Baltic populations. Highly diverged M genome occurs rarely in the Baltic mussels. Full sequences of the M genome identified in males (sperm) and F genome in females (eggs) were obtained. Both genomes were diverged by 24% in nucleotide sequence, but had similar nucleotide composition and codon usage bias. Constant domain (CD) of the control region (CR), the tRNA and rRNA genes were the most conserved. The most diverged was the variable domain 1 (VD1) of the control region. The F genome was longer than M by 147 bp. and the main difference was localised in the VD1 region. No recombination was observed in whole mtDNA of both studied variants. Nuclear mitochondrial pseudogenes (numts) have not been found by hybridisation with probes complementary to several fragments of the Baltic M. trossulus mtDNA.  相似文献   

12.

Background

Mitochondria contain their own DNA genome (mtDNA), as well as specific DNA replication and protein synthesis machineries. Relaxation of the circular, double-stranded mtDNA relies on the presence of topoisomerase activity. Three different topoisomerases have been identified in mitochondria: Top1mt, Top3α and a truncated form of Top2β.

Methodology/Principal Findings

The present study shows the importance of Top1mt in mitochondrial homeostasis. Here we show that Top1mt−/− murine embryonic fibroblasts (MEF) exhibit dysfunctional mitochondrial respiration, which leads decreased ATP production and compensation by increased glycolysis and fatty acid oxidation. ROS production in Top1mt−/− MEF cells is involved in nuclear DNA damage and induction of autophagy. Lack of Top1mt also triggers oxidative stress and DNA damage associated with lipid peroxidation and mitophagy in Top1mt−/− mice.

Conclusion/Significance

Together, our data implicate Top1mt for mitochondrial integrity and energy metabolism. The compensation mechanism described here contributes to the survival of Top1mt−/− cells and mice despite alterations of mitochondrial functions and metabolism. Therefore, this study supports a novel model for cellular adaptation to mitochondrial damage.  相似文献   

13.
Doubly uniparental inheritance (DUI) is a mode of inheriting mitochondrial DNA that is distinct from strictly maternal inheritance. It has been described in nine and three families of marine and freshwater mussels, respectively, including the European margaritiferids and unionids. Among the 16 freshwater species of Unionida inhabiting Europe, DUI has been described in 9 species of dioecious mussels and was absent from a single hermaphroditic species and from secondary hermaphroditic specimens. The DUI freshwater mussels include two vastly genetically different mitochondrial genomes: maternal (F genome) and paternal (M genome), which coexist within the same specimen but in different tissues. The F genome is present in all female tissues and somatic male tissues. It is inherited in the typical, maternal, manner. Conversely, the M genome is located primarily in the male gonads and generative cells, and is inherited paternally. Dioecious Unionidae display unique characteristics that have been interrelated for over 200 million years: a high fidelity of the transmission of the F and M genomes in DUI and two paths of spermatogenesis–the typical path that produces sperm cells containing mitochondria with the F genome and the atypical path that produces sperm cells with the M genome. The mitogenomes of freshwater mussels display unique features that are not present in any other animal, that is, an additional, gender-specific gene and an elongated cox2 gene occurring exclusively in the M genome. These features mean that the mitochondria, in addition to their basic function of producing energy, also may take part in determining sex in these dioecious organisms.  相似文献   

14.
Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a "role reversal" event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or "recently masculinized" M-types may eventually replace the older or "standard" M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.  相似文献   

15.
Marine mussels of the family Mytilidae, as well as a number of other bivalves, have a unique system of mitochondrial DNA inheritance called doubly uniparental inheritance (DUI). DUI is characterized by the presence of an ‘F’ mitochondrial genome that is transmitted through mothers to daughters and sons, and an ‘M’ mitochondrial genome that is transmitted only from fathers to sons. In this paper, we demonstrate that DUI exists in the horse mussel, Modiolus modiolus (Linnaeus, 1758) and compare the pattern of molecular evolution of the M and F types in this species. Total DNA was isolated from M. modiolus male and female gonad tissues, as well as from spawned sperm cells. From these DNA samples, partial mitochondrial DNA fragments were amplified from both cytochrome c oxidase subunit I (cox1), and 16S ribosomal RNA (rrnL) genes. Based on cox1 and rrnL sequences, heteroplasmy was observed in M. modiolus and characterized by the resolution of two mitotypes: an F mitotype present in tissues of both males and females, and an M mitotype present in spawned sperm. Using standardized p‐distance and Tamura‐Nei values, M. modiolus is found to display the highest M/F conspecific sequence divergence for any member of the family Mytilidae (i.e. 38% M/F sequence divergence, which is 9% higher than any other intraspecific M/F comparison for the family Mytilidae when standardized using p‐distances across all taxa observed). Sequence analysis also indicated that the M. modiolus M mitotype evolves significantly faster than its conspecific F type. The findings discussed herein broaden the range of mytilid species known to exhibit DUI and they also establish a new threshold for the genetic divergence of male mytilid mitochondrial genomes.  相似文献   

16.

Background

Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes.

Methodology/Principal Findings

We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes.

Conclusion

The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.  相似文献   

17.
Previous studies have shown that marine mussels (genus Mytilus) and a freshwater mussel (Pyganodon grandis) contain two distinct gender-associated mitotypes, which is a characteristic feature of the phenomenon of doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA). Here we present evidence for the presence of distinct male (M) and female (F) mitotypes in three other bivalve species, the mytilid Geukensia demissa, and the unionid species P. fragilis and Fusconaia flava. Nucleotide sequences of a segment of the COI gene from the M and F mitotypes from each of the three mytilid species (M. edulis, M. trossulus, G. demissa) and three unionid species (P. grandis, P. fragilis, F. flava) were used for phylogenetic analysis. The analysis suggests three independent origins of M and F mitotypes for the six species examined; one for the three unionid species, one for the two Mytilus species, and one for Geukensia. The first of these F/M divergence events, while of uncertain age, predates the divergence of the two unionid genera and is likely older than either of the two F/M divergence events in the mytilid taxa. The most parsimonious explanation of multiple F/M divergence events is that they represent independent origins of DUI. Another possibility is that, in a given taxon, an F or M mitotype assumes the role of the opposite mitotype (by virtue of a mechanism that remains to be clarified) and subsequently was fixed within its new gender. The fixation of a mtDNA lineage derived from a mitotype of switched function would reset the divergence of the gender-associated lineages to zero, thereby mimicking a de novo split of F and M lineages from a preexisting mtDNA genome that was not gender specific. Further broad-scale taxonomic studies of the occurrence of distinct M and F mitotypes may allow for the evaluation of the latter hypothesis.  相似文献   

18.

Background

The genus Liposcelis (Psocoptera: Troctomorpha) has more than 120 species with a worldwide distribution and they pose a risk for global food security. The organization of mitochondrial (mt) genomes varies between the two species of booklice investigated in the genus Liposcelis. Liposcelis decolor has its mt genes on a single chromosome, like most other insects; L. bostrychophila, however, has a multipartite mt genome with genes on two chromosomes.

Results

To understand how multipartite mt genome organization evolved in the genus Liposcelis, we sequenced the mt genomes of L. entomophila and L. paeta in this study. We found that these two species of booklice also have multipartite mt genomes, like L. bostrychophila, with the mt genes we identified on two chromosomes. Numerous pseudo mt genes and non-coding regions were found in the mt genomes of these two booklice, and account for 30% and 10% respectively of the entire length we sequenced. In L. bostrychophila, the mt genes are distributed approximately equally between the two chromosomes. In L. entomophila and L. paeta, however, one mt chromosome has most of the genes we identified whereas the other chromosome has largely pseudogenes and non-coding regions. L. entomophila and L. paeta differ substantially from each other and from L. bostrychophila in gene content and gene arrangement in their mt chromosomes.

Conclusions

Our results indicate unusually fast evolution in mt genome organization in the booklice of the genus Liposcelis, and reveal different patterns of mt genome fragmentation among L. bostrychophila, L. entomophila and L. paeta.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-861) contains supplementary material, which is available to authorized users.  相似文献   

19.
Yang CH  Chang HW  Ho CH  Chou YC  Chuang LY 《PloS one》2011,6(3):e17729

Background

Complete mitochondrial (mt) genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR) amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5′ end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA.

Methodology/Principal Findings

The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO), all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided.

Conclusions/Significance

In conclusion, it can be said that our proposed sliding window-based PSO algorithm provides the necessary primer sets for the entire mt genome amplification and sequencing.  相似文献   

20.
Xie Y  Zhang Z  Niu L  Wang Q  Wang C  Lan J  Deng J  Fu Y  Nie H  Yan N  Yang D  Hao G  Gu X  Wang S  Peng X  Yang G 《PloS one》2011,6(10):e27066

Background

Baylisascaris procyonis (Nematoda: Ascaridida), an intestinal nematode of raccoons, is emerging as an important helminthic zoonosis due to serious or fatal larval migrans in animals and humans. Despite its significant veterinary and public health impact, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. Mitochondrial (mt) genomes can provide a foundation for investigations in these areas and assist in the diagnosis and control of B. procyonis. In this study, the first complete mt genome sequence of B. procyonis was determined using a polymerase chain reaction (PCR)-based primer-walking strategy.

Methodology/Principal Findings

The circular mt genome (14781 bp) of B. procyonis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes congruent with other chromadorean nematodes. Interestingly, the B. procyonis mtDNA featured an extremely long AT-rich region (1375 bp) and a high number of intergenic spacers (17), making it unique compared with other secernentean nematodes characterized to date. Additionally, the entire genome displayed notable levels of AT skew and GC skew. Based on pairwise comparisons and sliding window analysis of mt genes among the available 11 Ascaridida mtDNAs, new primer pairs were designed to amplify specific short fragments of the genes cytb (548 bp fragment) and rrnL (200 bp fragment) in the B. procyonis mtDNA, and tested as possible alternatives to existing mt molecular beacons for Ascaridida. Finally, phylogenetic analysis of mtDNAs provided novel estimates of the interrelationships of Baylisasaris and Ascaridida.

Conclusions/Significance

The complete mt genome sequence of B. procyonis sequenced here should contribute to molecular diagnostic methods, epidemiological investigations and ecological studies of B. procyonis and other related ascaridoids. The information will be important in refining the phylogenetic relationships within the order Ascaridida and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of parasitic nematodes of socio-economic importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号