首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, HPRP-A2, a synthetic 15-mer cationic peptides with all D-amino acids, effectively inhibited the survival of gastric cell lines in a dose-dependent manner. Gastric tumor cells killing by HPRP-A2 involves a rapid collapse of the membrane integrity and intracellular pathways. Propidium iodide (PI) and lactate dehydrogenase (LDH) assays demonstrated that one-hour treatment with HPRP-A2 led to membrane permeability changes of BGC-823 cells in a dose-dependent manner. Moreover, HPRP-A2 induced apoptosis in BGC-823 cells involves a marked increase in generation of reactive oxygen species (ROS),caspase-3, -8 and -9 activation, a reduction of mitochondrial membrane potential (MMP), and cell cycle arrest in G1 phase. In addition to its inherent cytotoxicity, HPRP-A2 synergized strongly with doxorubicin (DOX) to enhance the efficacy of killing gastric tumor cells in vitro. We believe that HPRP-A2 with all D-amino acids could be a potent candidate of anticancer therapeutics, especially in combination therapy.  相似文献   

2.
Since a release of intracellular contents can induce local inflammatory responses, mechanisms that lead to loss of plasma membrane integrity in cell death are important to know. We showed previously that deficiency of the plasma membrane Ca2+ ATPase 4 (PMCA4) in L929 cells impaired tumor necrosis factor alpha (TNF-alpha)-induced enlargement of lysosomes and reduced cell death. The lysosomal changes can be determined by measuring the total volume of intracellular acidic compartments per cell (VAC), and we show here that inhibition of the increase in VAC due to PMCA4 deficiency not only reduced cell death but also converted TNF-alpha-induced cell death from a process involving disruption of the plasma membrane to a cell demise with a nearly intact plasma membrane. The importance of the size of lysosomes in determining plasma membrane integrity during cell death was supported by the observations that chemical inhibitors that reduce VAC also reduced the plasma membrane disruption induced by TNF-alpha in wild-type L929 cells, while increases in VAC due to genetic mutation, senescence, cell culture conditions, and chemical inhibitors all changed the morphology of cell death from one with an originally nearly intact plasma membrane to one with membrane disruption in a number of different cells. Moreover, the ATP depletion-mediated change from apoptosis to necrosis is also associated with the increases of VAC. The increase in lysosomal size may due to intracellular self-digestion of dying cells. Big lysosomes are easy to rupture, and the release of hydrolytic enzymes from ruptured lysosomes can cause plasma membrane disruption.  相似文献   

3.
In a previous study (A. Hemmerlin, T.J. Bach, Plant Physiol. 123 (2000) 1257-1268), we have demonstrated that above a critical concentration, treatment with all-trans-farnesol induces cell-death in Nicotiana tabacum L. cv Bright Yellow-2 (TBY-2) cells. Now we used a fluorescent analog of farnesol (Fol(FLUO)), in which an isoprene unit is replaced by the fluorochrome 7-nitrobenz-2-oxa-1,3-diazol-4-yl, to visualize how cell integrity is affected. Fol(FLUO) exhibited the same toxicity as the natural compound and was shown to be readily taken up by TBY-2 cells, followed by integration into subcellular membrane structures. Although the plasma membrane seemed not to be labeled, Fol(FLUO) was associated with the tonoplast, endoplasmic reticulum, and Golgi apparatus or lipid bodies. Longer exposure times and increased Fol(FLUO) accumulation triggered the formation and proliferation of new membrane structures of as yet unknown function. Finally, at even higher and clearly cytotoxic concentrations of the analog, the cell contents became clearly disorganized, with cell swelling and ultimately plasmolysis.  相似文献   

4.
原儿茶酸对阪崎克罗诺肠杆菌的抑制作用   总被引:1,自引:0,他引:1  
【背景】阪崎克罗诺肠杆菌是一种食源性条件致病菌,它能够引起新生儿、婴幼儿及免疫能力低下的成年人罹患多种疾病,致死率高达50%-80%。【目的】探究天然植物源物质原儿茶酸对阪崎克罗诺肠杆菌的抑制作用及可能的抑制机理。【方法】采用琼脂稀释法确定原儿茶酸对阪崎克罗诺肠杆菌的最小抑菌浓度,并检测其对阪崎克罗诺肠杆菌生长曲线的影响。为探究原儿茶酸对阪崎克罗诺肠杆菌细胞膜的损伤,实验测定了细菌胞内pH、膜电位、胞内ATP浓度、细胞膜完整性,并利用扫描电镜观测原儿茶酸对阪崎克罗诺肠杆菌细胞形态的改变。【结果】原儿茶酸对阪崎克罗诺肠杆菌的最小抑菌浓度为2.5-5.0 mg/mL,原儿茶酸降低了阪崎克罗诺肠杆菌的生长速率。原儿茶酸作用后阪崎克罗诺肠杆菌胞内pH降低,细胞膜电位发生超级化/去极化,胞内ATP浓度降低,细胞膜完整性降低,细胞形态发生变化,这说明原儿茶酸改变了细胞膜通透性。【结论】原儿茶酸对阪崎克罗诺肠杆菌具有良好的抑制效果,其可能的抑菌机理是影响细胞膜的通透性及细胞形态。综合考虑原儿茶酸的多种生物活性,它有潜力作为天然抑菌物质在婴幼儿乳粉等其他食品中开发使用。  相似文献   

5.
A mathematical model of the regulation of cell division is suggested. The model is based on the hypothesis that the process giving rhythm to cell division is located in the cell membrane: i.e., the process of free-radical oxidation of membrane lipids. Much depends on the physical state of the membrane. In the membrane, phase transitions take place because of the changes in lipid composition. These transitions differ in normal and tumor cells: in normal cells they are sharp and hysteretic owing to the presence of a framework (membrane skeleton) on the surface of the membrane, while in tumor cells the integrity of the surface is violated so that the transitions are smooth. This model makes it possible to explain differences in the regulation of normal and cancer cell proliferation. Within the limits of the model, such phenomena as density dependent inhibition of growth, reverse transformation, influence of cyclic AMP and ions of Ca2+ on the cell cycle, the actions of serum and of proteases on the cycle, and so on, are explained. A rational scheme for the appearance of the selective damage found in tumor cells is proposed.  相似文献   

6.
Target cell destruction following contact of the target cell by specific alloimmune cytotoxic thymus-derived lymphocytes (CTL) has been examined by time-lapse film (TLF), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Effector-target conjugates of murine CTL with leukemia cells were prepared for use in these studies. TLF shows that contact of the two cells results in tumor cell zeosis involving violent membrane blebbing, and subsequent tumor cell death. TEM of the contact region shows that the CTL-tumor cell junction is extremely adherent. Examination of conjugates incubated at 37 °C to permit tumor cell lysis shows tumor cell membrane stretching and rupture, and tumor cell membrane fragments adhering to CTL. Close examination of the contact region has revealed electron-lucent junctions spanning the gap between the two cell membranes, but no packaging or secretory apparatus was prominent. The results are consistent with the mechanism of cell-mediated cytolysis being a membrane phenomenon involving junctions connecting the CTL and target cell and the initial target cell lesion observable as a stretching and rupture. The shear force of vigorous cell movements is most likely responsible for this target membrane tearing, creating a target cell lesion which results in loss of osmotic integrity and cell death.  相似文献   

7.
《Biophysical journal》2020,118(7):1552-1563
Tumor cells express a unique cell surface glycocalyx with upregulation of sulfated glycosaminoglycans and charged glycoproteins. Little is known about how electromagnetic fields interact with this layer, particularly with regard to harnessing unique properties for therapeutic benefit. We applied a pulsed 20-millitesla (mT) magnetic field with rate of rise (dB/dt) in the msec range to cultured tumor cells to assess whether this affects membrane integrity as measured using cytolytic assays. A 10-min exposure of A549 human lung cancer cells to sequential 50- and 385-Hz oscillating magnetic fields was sufficient to induce intracellular protease release, suggesting altered membrane integrity after the field exposure. Heparinase treatment, which digests anionic sulfated glycan polymers, before exposure rendered cells insensitive to this effect. We further examined a non-neoplastic human primary cell line (lung lymphatic endothelial cells) as a typical normal host cell from the lung cancer microenvironment and found no effect of field exposure on membrane integrity. The field exposure was also sufficient to alter proliferation of tumor cells in culture, but not that of normal lymphatic cells. Pulsed magnetic field exposure of human breast cancer cells that express a sialic-acid rich glycocalyx also induced protease release, and this was partially abrogated by sialidase pretreatment, which removes cell surface anionic sialic acid. Scanning electron microscopy showed that field exposure may induce unique membrane “rippling” along with nanoscale pores on A549 cells. These effects were caused by a short exposure to pulsed 20-mT magnetic fields, and future work may examine greater magnitude effects. The proof of concept herein points to a mechanistic basis for possible applications of pulsed magnetic fields in novel anticancer strategies.  相似文献   

8.

Background

Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities.

Methodology/Principal Findings

Our novel derivatives of chlorin e6, that is, its amide (compound 2) and boronated amide (compound 5) evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e6 against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 µM of 5 caused rapid (within the initial minutes) necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all) lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3–4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e6 in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers.

Conclusions/Significance

The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are directly associated with membrane permeabilization caused by lipid photodamage.  相似文献   

9.
Two series of novel pyridoxine-based azaheterocyclic analogs of feruloyl methane (Dehydrozingerone, DZG) were synthesized, and their biological activity against a panel of tumor and normal cell lines was evaluated in vitro. The most active compounds possessed expressed cytotoxic activity, which was comparable to cytotoxic activity of doxorubicin and significantly higher than that of DZG, and a remarkable selectivity for the studied cancer cell lines as compared to the normal cells. The leading compound and DZG initiated arrest of the cell cycle in the G2/M phase, preventing normal division and further transition of daughter cells to the G0/G1 phase. Similar to DZG, but with higher efficiency, the leading compound was able to inhibit migration activity and, therefore, invasiveness of tumor cells. It also increased concentration of reactive oxygen species in tumor cells, induced depolarization of mitochondrial membranes and initiated apoptosis accompanied by disruption of integrity of cytoplasmic cell membranes. By contrast to DZG, the leading compound did not possess antioxidant properties. The obtained data make the described chemotype a promising starting point for the development of new anticancer agents.  相似文献   

10.
In a previous study we demonstrated that depletion of Caco-2 cell cholesterol results in the loss of tight junction (TJ) integrity through the movement of claudins 3 and 4 and occludin, but not claudin 1, out of the TJs [1]. The aims of this study were to determine whether the major tight junction (TJ) proteins in Caco-2 cells are associated with cholesterol rich, membrane raft-like domains and if the loss of TJ integrity produced by the extraction of cholesterol reflects the dissolution of these domains resulting in the loss of TJ organisation. We have demonstrated that in Caco-2 cells claudins 1, 3, 4 and 7, JAM-A and occludin, are associated with cholesterol rich membrane domains that are insoluble in Lubrol WX. Co-immunoprecipitation studies demonstrated that there is no apparent restriction on the combination of claudins present in the rafts and that interaction between the proteins is dependent on cholesterol. JAM-A was not co-immunoprecipitated with the other TJ proteins indicating that it is resident within in a distinct population of rafts and therefore is likely not directly associated with the claudins/occludin present in the TJ complexes. Depletion of Caco-2 cell cholesterol with methyl-beta-cyclodextrin resulted in the displacement of claudins 3, 4 and 7, JAM-A and occludin, but not claudin 1, out of the cholesterol rich domains. Our data indicate that depletion of cholesterol does not result in the loss of the TJ-associated membrane rafts. However, the sterol is required to maintain the association of key proteins with the TJ associated membrane rafts and therefore the TJs. Furthermore, the data suggest that cholesterol may actually directly stabilise the multi-protein complexes that form the TJ strands.  相似文献   

11.
BACKGROUND: Over the past decade, cell separation technology has become an important tool in various fields of cell biology allowing for the analysis or subsequent cultivation of specific cell subsets. The objective of the present study was to evaluate if the established sorting techniques fluorescence-activated (FACS) and magnetic cell separation (MACS) affect cell membrane physiology in order to define the most non-perturbing application for the separation of tumor and stromal cells. MATERIALS AND METHODS: Membrane physiology was monitored in single cell suspensions of adherently grown BT474 breast tumor cells and N1 normal skin fibroblasts using flow cytometry. Cell membrane integrity was evaluated by propidium iodide (PI) staining. Microviscosity within the lipophilic membrane layer was determined by a monomer/excimer method utilizing pyrene decanoic acid, membrane potential measurements were carried out using the fluorescence indicator DiBAC4(3), and Annexin-V-staining reflected transversal membrane asymmetry, and an altered phospholipid distribution. RESULTS: Not only the number of preparative cycles prior to cell separation but also the sort conditions during FACS resulted in loss of membrane integrity of a certain cell fraction. If these PI-positive cells were excluded from further analysis, neither MACS nor FACS affected membrane microviscosity while a clear hyperpolarization in both cell types after MACS resulting from exposure to the ferromagnetic matrix of the depletion column and the inhomogeneous magnetic field was shown. In addition, cell sorting of BT474 tumor cells by MACS and FACS was accompanied by the generation of an Annexin-V-positive/PI-negative cell fraction with altered phospholipid distribution. Data were discussed with regard to the sort-induced "stress" conditions such as exposure to hydrodynamic forces or magnetic fields. CONCLUSIONS: Both separation procedures modify cell membrane with neither technique being physiologically preferable for subsequent analysis or recultivation of the sorted cells.  相似文献   

12.
Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.  相似文献   

13.
We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y(2) puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of the important membrane structural components, may play an important role in transducing extracellular fluid shear stress to intracellular responses. Due to the limitations of current techniques, there is no direct approach to study the role of lipid rafts in transmitting fluid shear stress. In this study, we targeted two important membrane components associated with lipid rafts, cholesterol, and glycosylphosphatidylinositol-anchored proteins (GPI-anchored proteins), to disrupt the integrity of cell membrane structures. We first demonstrated that membrane cholesterol depletion with the treatment of methyl-β-cyclodextrin inhibits oscillatory fluid flow induced intracellular calcium mobilization and ERK1/2 phosphorylation in MC3T3-E1 osteoblastic cells. Secondly, we used a novel approach to decrease the levels of GPI-anchored proteins on cell membranes by overexpressing glycosylphosphatidylinositol-specific phospholipase D in MC3T3-E1 osteoblastic cells. This resulted in significant inhibition of intracellular calcium mobilization and ERK1/2 phosphorylation in response to oscillatory fluid flow. Finally, we demonstrated that cholesterol depletion inhibited oscillatory fluid flow induced ATP releases, which were responsible for the activation of calcium signaling pathways in MC3T3-E1 osteoblastic cells. Our findings suggest that cholesterol and GPI-anchored proteins, two membrane structural components related to lipid rafts, may play an important role in osteoblastic cell mechanotransduction.  相似文献   

14.
C60 carboxyfullerene is a novel buckminsterfullerene-derived compound that behaves as a free-radical scavenger. In the present report, we investigated whether this drug exerts a protective activity against oxidative stress-induced apoptosis. Human peripheral blood mononuclear cells (PBMCs) were challenged by 2-deoxy-d-ribose (dRib) or TNF-alpha plus cycloheximide as agents that trigger apoptosis by interfering with the redox status of cell and mitochondrial membrane potential. We found that carboxyfullerene was able to protect quiescent PBMCs from apoptosis caused either by 2-deoxy-d-ribose or TNF-alpha plus cycloheximide by a mechanism partially involving the mitochondrial membrane potential integrity, known to be associated with early stages of apoptosis. These results represent the first indication for a target activity of buckminsterfullerenes on cells of the immune system and their mitochondria.  相似文献   

15.
Trefoil factor family (TFF) domain peptides, products of mucin-secreting epithelial cells, are thought to influence mucosal integrity. Molecular studies revealed that mammalian TFFs lack transmembrane domains. Using immunocytochemistry and FACS analysis we demonstrated the association of TFF1 with the cell membrane in MCF-7 (a breast adenocarcinoma cell line), and tested the hypothesis that glycosylphosphatidylinositol (GPI) linkage is the mechanism for this association. Cleavage of GPI anchorage using phospholipase C did not affect TFF1 binding to the cell membrane. Our results demonstrate for the first time that TFF1 is associated with the cell membrane of MCF-7 cells and is not linked via a GPI anchor.  相似文献   

16.
A large number of assays are available to monitor viability in mammalian cell cultures with most defining loss of viability as a loss of plasma membrane integrity, a characteristic of necrotic cell death. However, the majority of cultured cells die by apoptosis and early apoptotic cells, although non-viable, maintain an intact plasma membrane and are thus ignored. Here we measure the viability of cultures of a number of common mammalian cell lines by assays that measure membrane integrity (a measure of necrotic cell death) and assays that measure apoptotic cells, and show that discrepancies in the measurement of culture viability have a significant impact on the calculation of cell culture parameters and lead to skewed experimental data.  相似文献   

17.
In experiments with Ehrlich ascites tumor cells, using a specific thiol blocker, 6,6'-dithiodinicotinic acid, that does not penetrate the cell and therefore only binds SH-groups of peripheral areas of an external cell membrane, it was demonstrated that (1) the external cell membrane is the site where the radioprotective effect of anoxia (the oxygen effect) is realised (2) thiols of the external cell membrane contribute markedly to the oxygen effect, and (3) they are needed at both stages of its realization.  相似文献   

18.
A previous study reported that compound 5A, a caffeic acid phenethyl ester (CAPE) analog, exhibited obvious neuroprotective activity, in particular, compound 5A possessed higher stability and membrane permeability than CAPE. CAPE displays antitumour function; therefore, evaluating the antitumour effect of its analog with higher stability and membrane permeability is worthwhile. We first investigated the antitumour activity of compound 5A. We found that compound 5A significantly inhibited the proliferation of tumor cells and showed low cytotoxicity in normal cells. Furthermore, compound 5A was found to induce the cell cycle arrest and apoptosis of CNE2 cells. Through the prediction of SwissTargetPrediction and subsequent confirmation, epidermal growth factor receptor (EGFR) was identified as a target of compound 5A. Compound 5A also influenced the expression of genes downstream of EGFR in nasopharyngeal carcinoma (NPC) cells. Based on these findings, compound 5A inhibits the proliferation of NPC cells by targeting EGFR and may become a new candidate compound for NPC treatment.  相似文献   

19.
As pathogenic bacteria become increasingly resistant to antibiotics, antimicrobials with mechanisms of action distinct from current clinical antibiotics are needed. Gram-negative bacteria pose a particular problem because they defend themselves against chemicals with a minimally permeable outer membrane and with efflux pumps. During infection, innate immune defense molecules increase bacterial vulnerability to chemicals by permeabilizing the outer membrane and occupying efflux pumps. Therefore, screens for compounds that reduce bacterial colonization of mammalian cells have the potential to reveal unexplored therapeutic avenues. Here we describe a new small molecule, D66, that prevents the survival of a human Gram-negative pathogen in macrophages. D66 inhibits bacterial growth under conditions wherein the bacterial outer membrane or efflux pumps are compromised, but not in standard microbiological media. The compound disrupts voltage across the bacterial inner membrane at concentrations that do not permeabilize the inner membrane or lyse cells. Selection for bacterial clones resistant to D66 activity suggested that outer membrane integrity and efflux are the two major bacterial defense mechanisms against this compound. Treatment of mammalian cells with D66 does not permeabilize the mammalian cell membrane but does cause stress, as revealed by hyperpolarization of mitochondrial membranes. Nevertheless, the compound is tolerated in mice and reduces bacterial tissue load. These data suggest that the inner membrane could be a viable target for anti-Gram-negative antimicrobials, and that disruption of bacterial membrane voltage without lysis is sufficient to enable clearance from the host.  相似文献   

20.
Avicins, a family of triterpene electrophiles originally identified as potent inhibitors of tumor cell growth, have been shown to be pleiotropic compounds that also possess antioxidant, anti-mutagenic, and anti-inflammatory activities. We previously showed that Jurkat cells, which express a high level of Fas, are very sensitive to treatment with avicins. Thus, we hypothesized that avicins may induce cell apoptosis by activation of the Fas pathway. By using a series of cell lines deficient in cell death receptors, we demonstrated that upon avicin D treatment, Fas translocates to the cholesterol- and sphingolipid-enriched membrane microdomains known as lipid rafts. In the lipid rafts, Fas interacts with Fas-associated death domain (FADD) and Caspase-8 to form death-inducing signaling complex (DISC) and thus mediates cell apoptosis. Interfering with lipid raft organization by using a cholesterol-depleting compound, methyl-β-cyclodextrin, not only prevents the clustering of Fas and its DISC complex but also reduces the sensitivity of the cells to avicin D. Avicin D activates Fas pathways independent of the association between extracellular Fas ligands and Fas receptors. A deficiency in Fas and its downstream signaling molecules leads to the resistance of the cells to avicin D treatment. Taken together, our results demonstrate that avicin D triggers the redistribution of Fas in the membrane lipid rafts, where Fas activates receptor-mediated cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号