首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Matrix biology》2006,25(3):149-157
Degradation of organic bone matrix requires proteinase activity. Cathepsin K is a major osteoclast proteinase needed for bone resorption, although osteoclasts also express a variety of other cysteine- and matrix metalloproteinases that are involved in bone remodellation. Cystatin B, an intracellular cysteine proteinase inhibitor, exhibits a lysosomal distribution preferentially in osteoclasts but it's role in osteoclast physiology has remained unknown. The current paper describes a novel regulatory function for cystatin B in bone-resorbing osteoclasts in vitro. Rat osteoclasts were cultured on bovine bone and spleen-derived cystatin B was added to the cultures. Nuclear morphology was evaluated and the number of actively resorbing osteoclasts and resorption pits was counted. Intracellular cathepsin K and tartrate-resistant acid phosphatase (TRACP) activities were monitored using fluorescent enzyme substrates and immunohistology was used to evaluate distribution of cystatin B in rat metaphyseal bone. Microscopical evaluation showed that cystatin B inactivated osteoclasts, thus resulting in impaired bone resorption. Cathepsin K and TRACP positive vesicles disappeared dose-dependently from the cystatin B-treated osteoclasts, indicating a decreased intracellular trafficking of bone degradation products. At the same time, cystatin B protected osteoclasts from experimentally induced apoptosis. These data show for the first time that, in addition to regulating cysteine proteinase activity and promoting cell survival in the nervous system, cystatin B inhibits bone resorption by down-regulating intracellular cathepsin K activity despite increased osteoclast survival.  相似文献   

2.
Estrogen deficiency arising with the menopause promotes marked acceleration of bone resorption, which can be restored by hormone replacement therapy. The inhibitory effects of estrogen seem to involve indirect cytokine- mediated effects via supporting bone marrow cells, but direct estrogen-receptor mediated effects on the bone-resorbing osteoclasts have also been proposed. Little information is available on whether estrogens modulate human osteoclastogenesis or merely inhibit the functional activity of osteoclasts. To clarify whether estrogens directly modulate osteoclastic activities human CD14+ monocytes were cultured in the presence of M-CSF and RANKL to induce osteoclast differentiation. Addition of 0.1-10 nM 17beta-estradiol to differentiating osteoclasts resulted in a dose-dependent reduction in tartrate resistant acid phosphatase (TRACP) activity reaching 60% at 0.1 nM. In addition, 17beta-estradiol inhibited bone resorption, as measured by the release of the C-terminal crosslinked telopeptide (CTX), by 60% at 0.1 nM, but had no effect on the overall cell viability. In contrast to the results obtained with differentiating osteoclasts, addition of 17beta-estradiol (0.001-10 nM) to mature osteoclasts did not affect bone resorption or TRACP activity. We investigated expression of the estrogen receptors, using immunocytochemistry and Western blotting. We found that ER-alpha is expressed in osteoclast precursors, whereas ER- beta is expressed at all stages, indicating that the inhibitory effect of estrogen on osteoclastogenesis is mediated by ER-alpha for the major part. In conclusion, these results suggest that the in vivo effects of estrogen are mediated by reduction of osteoclastogenesis rather than direct inhibition of the resorptive activity of mature osteoclasts.  相似文献   

3.
Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton’s reaction. Previous studies suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign compounds during antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP+) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and superoxide production. Nitric oxide production was increased in activated macrophages of WT mice, but not in TRACP+ mice. Macrophages from TRACP+ mice showed increased capacity of bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense system.  相似文献   

4.
Distal-less 3 (DLX3) gene mutations are etiologic for Tricho-Dento-Osseous syndrome. To investigate the in vivo impact of mutant DLX3 on bone development, we established transgenic (TG) mice expressing the c.571_574delGGGG DLX-3 gene mutation (MT-DLX3) driven by a mouse 2.3 Col1A1 promoter. Microcomputed tomographic analyses demonstrated markedly increased trabecular bone volume and bone mineral density in femora from TG mice. In ex vivo experiments, TG mice showed enhanced differentiation of bone marrow stromal cells to osteoblasts and increased expression levels of bone formation markers. However, TG mice did not show enhanced dynamic bone formation rates in in vivo fluorochrome double labeling experiments. Osteoclastic differentiation capacities of bone marrow monocytes were reduced in TG mice in the presence of osteoclastogenic factors and the numbers of TRAP(+) osteoclasts on distal metaphyseal trabecular bone surfaces were significantly decreased. TRACP 5b and CTX serum levels were significantly decreased in TG mice, while IFN-γ levels were significantly increased. These data demonstrate that increased levels of IFN-γ decrease osteoclast bone resorption activities, contributing to the enhanced trabecular bone volume and mineral density in these TG mice. These data suggest a novel role for this DLX-3 mutation in osteoclast differentiation and bone resorption.  相似文献   

5.
MAGP1 is an extracellular matrix protein that, in vertebrates, is a ubiquitous component of fibrillin-rich microfibrils. We previously reported that aged MAGP1-deficient mice (MAGP1Δ) develop lesions that are the consequence of spontaneous bone fracture. We now present a more defined bone phenotype found in MAGP1Δ mice. A longitudinal DEXA study demonstrated age-associated osteopenia in MAGP1Δ animals and μCT confirmed reduced bone mineral density in the trabecular and cortical bone. Further, MAGP1Δ mice have significantly less trabecular bone, the trabecular microarchitecture is more fragmented, and the diaphyseal cross-sectional area is significantly reduced. The remodeling defect seen in MAGP1Δ mice is likely not due to an osteoblast defect, because MAGP1Δ bone marrow stromal cells undergo osteoblastogenesis and form mineralized nodules. In vivo, MAGP1Δ mice exhibit normal osteoblast number, mineralized bone surface, and bone formation rate. Instead, our findings suggest increased bone resorption is responsible for the osteopenia. The number of osteoclasts derived from MAGP1Δ bone marrow macrophage cells is increased relative to the wild type, and osteoclast differentiation markers are expressed at earlier time points in MAGP1Δ cells. In vivo, MAGP1Δ mice have more osteoclasts lining the bone surface. RANKL (receptor activator of NF-κB ligand) expression is significantly higher in MAGP1Δ bone, and likely contributes to enhanced osteoclastogenesis. However, bone marrow macrophage cells from MAGP1Δ mice show a higher propensity than do wild-type cells to differentiate to osteoclasts in response to RANKL, suggesting that they are also primed to respond to osteoclast-promoting signals. Together, our findings suggest that MAGP1 is a regulator of bone remodeling, and its absence results in osteopenia associated with an increase in osteoclast number.  相似文献   

6.
Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.  相似文献   

7.
Osteoclastoma-derived giant cells were used to produce 11 mouse monoclonal antibodies (MAb) reactive against human osteoclasts on undecalcified sections of adult human bone. All exhibited unique reactivities across a wide range of human tissues. Three in particular demonstrated distinctive reactivities; C35 was highly selective for bone osteoclasts, C27 showed selective reactivity for osteoclasts, tissue macrophages and blood-borne monocytes, and C22 showed selective membrane staining of osteoclasts. Consequently, C22 was used to coat Dynabeads to affinity-purify viable human osteoclasts from osteoclastoma-derived cell suspensions. Immunocytochemical staining of inflammatory osteoarthritic synovium/granulation tissue demonstrated positivity in the majority of giant cells with MAb C22 and C27. In contrast, C35 reacted with only very occasional giant cells. Furthermore, multinucleated cells formed in long-term human bone marrow cultures demonstrated similar selective staining. C27 stained all giant cells and the majority of mononuclear cells. C22 detected only a small proportion of giant cells. In contrast to its staining on bone osteoclasts, C22 demonstrated granular cytoplasmic staining in cultured giant cells. C35 stained no cells at all in these cultures. These MAb can therefore distinguish between giant cells of various origins and authentic mature osteoclasts. Alternatively, they can recognize antigens expressed at different stages of osteoclast differentiation and therefore provide an excellent tool for the study of the human osteoclast lineage.  相似文献   

8.
A novel technique for the histochemical demonstration of acid phosphatase (AcPase) and alkaline phosphatase (AkPase) in hard tissues has been proposed. Fresh, unfixed, undecalcified samples of rat tooth germs and surrounding structures were embedded in LR Gold resin at -20 degrees C. Sections of 2 microns were taken and subsequently processed for enzyme histochemistry. AkPase reaction product appeared as strong linear staining outlining cell boundaries and was present in the enamel organ, dental pulp, and osteoblast cells. Tartrate-resistant AcPase staining was seen exclusively in the osteoclasts of developing alveolar bone. Our results demonstrated that the use of unfixed, undecalcified LR Gold resin-embedded specimens for histochemistry is a novel technique which may be of value for certain studies when decalcification of specimens is undesirable. The technique appears to give good preservation of enzyme activity combined with the ability to prepare sections with excellent morphological detail.  相似文献   

9.
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.  相似文献   

10.
Disruption of ephrin B1 in collagen I producing cells in mice results in severe skull defects and reduced bone formation. Because ephrin B1 is also expressed during osteoclast differentiation and because little is known on the role of ephrin B1 reverse signaling in bone resorption, we examined the bone phenotypes in ephrin B1 conditional knockout mice, and studied the function of ephrin B1 reverse signaling on osteoclast differentiation and resorptive activity. Targeted deletion of ephrin B1 gene in myeloid lineage cells resulted in reduced trabecular bone volume, trabecular number and trabecular thickness caused by increased TRAP positive osteoclasts and bone resorption. Histomorphometric analyses found bone formation parameters were not changed in ephrin B1 knockout mice. Treatment of wild-type precursors with clustered soluble EphB2-Fc inhibited RANKL induced formation of multinucleated osteoclasts, and bone resorption pits. The same treatment of ephrin B1 deficient precursors had little effect on osteoclast differentiation and pit formation. Similarly, activation of ephrin B1 reverse signaling by EphB2-Fc treatment led to inhibition of TRAP, cathepsin K and NFATc1 mRNA expression in osteoclasts derived from wild-type mice but not conditional knockout mice. Immunoprecipitation with NHERF1 antibody revealed ephrin B1 interacted with NHERF1 in differentiated osteoclasts. Treatment of osteoclasts with exogenous EphB2-Fc resulted in reduced phosphorylation of ezrin/radixin/moesin. We conclude that myeloid lineage produced ephrin B1 is a negative regulator of bone resorption in vivo, and that activation of ephrin B1 reverse signaling inhibits osteoclast differentiation in vitro in part via a mechanism that involves inhibition of NFATc1 expression and modulation of phosphorylation status of ezrin/radixin/moesin.  相似文献   

11.
Diagnosis and follow-up of bone metastases in breast cancer patients usually rely on symptoms and imaging studies. Tartrate-resistant acid phosphatase 5b (TRACP 5b) is a specific marker of osteoclasts and is herein proposed as a marker of bone metastasis in breast cancer patients. An immunoassay using a monoclonal antibody, 14G6, was used to measure the activity of serum TRACP 5b at pH 6.1 in 30 early breast cancer patients without bone metastasis and in 30 aged-matched breast cancer patients with bone metastasis. Another 60 normal volunteers were recruited as controls. Bone alkaline phosphatase (BAP), a traditional marker of bone turnover, was also measured in selected cases. The overall mean TRACP 5b activity in normal women was 2.83 ± 1.1 U/I, and it increased with age. The mean TRACP 5b activity in early breast cancer patients did not differ from that of the normal group (2.93 ± 0.64 vs. 2.83 ± 1.1 U/I; p=0.66), whereas it was significantly higher in breast cancer patients with bone metastasis (5.42 ± 2.5 vs. 2.83 ± 1.1 U/I; p<0.0001). BAP activity was significantly higher in breast cancer patients with bone metastasis than in early breast cancer patients (p=0.004). Serum TRACP 5b activity correlated well with BAP activity in breast cancer patients with bone metastasis (p<0.0001), but not in normal individuals or in patients without bone metastasis. TRACP 5b activity can be considered a surrogate indicator of bone metastasis in breast cancer patients.  相似文献   

12.
We investigated the bone phenotype of mice with generalized lymphoproliferative disorder (gld) due to a defect in the Fas ligand-mediated apoptotic pathway. C57BL/6-gld mice had greater whole body bone mineral density and greater trabecular bone volume than their wild-type controls. gld mice lost 5-fold less trabecular bone and had less osteoclasts on bone surfaces after ovariectomy-induced bone resorption. They also formed more bone in a model of osteogenic regeneration after bone marrow ablation, had less osteoclasts on bone surfaces and less apoptotic osteoblasts. gld and wild-type mice had similar numbers of osteoclasts in bone marrow cultures, but marrow stromal fibroblasts from gld mice formed more alkaline phosphatase-positive colonies. Bone diaphyseal shafts and bone marrow stromal fibroblasts produced more osteoprotegerin mRNA and protein than wild-type mice. These findings provide evidence that the disturbance of the bone system is a part of generalized lymphoproliferative syndrome and indicates the possible role of osteoprotegerin as a regulatory link between the bone and immune system.  相似文献   

13.
Receptor activator of NF‐κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter‐driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)‐induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.  相似文献   

14.
Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption.  相似文献   

15.
Bone remodeling is intrinsically regulated by cell signaling molecules. The Protein Kinase C (PKC) family of serine/threonine kinases is involved in multiple signaling pathways including cell proliferation, differentiation, apoptosis and osteoclast biology. However, the precise involvement of individual PKC isoforms in the regulation of osteoclast formation and bone homeostasis remains unclear. Here, we identify PKC-δ as the major PKC isoform expressed among all PKCs in osteoclasts; including classical PKCs (−α, −β and −γ), novel PKCs (−δ, −ε, −η and −θ) and atypical PKCs (−ι/λ and −ζ). Interestingly, pharmacological inhibition and genetic ablation of PKC-δ impairs osteoclastic bone resorption in vitro. Moreover, disruption of PKC-δ activity protects against LPS-induced osteolysis in mice, with osteoclasts accumulating on the bone surface failing to resorb bone. Treatment with the PKC-δ inhibitor Rottlerin, blocks LPS-induced bone resorption in mice. Consistently, PKC-δ deficient mice exhibit increased trabeculae bone containing residual cartilage matrix, indicative of an osteoclast-rich osteopetrosis phenotype. Cultured ex vivo osteoclasts derived from PKC-δ null mice exhibit decreased CTX-1 levels and MARKS phosphorylation, with enhanced formation rates. This is accompanied by elevated gene expression levels of cathepsin K and PKC −α, −γ and −ε, as well as altered signaling of pERK and pcSrc416/527 upon RANKL-induction, possibly to compensate for the defects in bone resorption. Collectively, our data indicate that PKC-δ is an intrinsic regulator of osteoclast formation and bone resorption and thus is a potential therapeutic target for pathological osteolysis.  相似文献   

16.
Osteoclast differentiation is a complex process involving cytoskeleton and nuclear reorganization. Osteoclasts regulate bone homeostasis and have a key role in bone degenerative processes. Osteolysis and osteoporosis characterize a subset of laminopathies, inherited disorders due to defects in lamin A/C. Laminopathies featuring bone resorption are characterized, at the molecular level, by anomalous accumulation of the unprocessed lamin A precursor, called prelamin A. To obtain a suitable cell model to study prelamin A effects on osteoclasts, prelamin A processing inhibitors FTI-277 or AFCMe were applied to peripheral blood monocytes induced to differentiate towards the osteoclastic lineage. Previous studies have shown that treatment with FTI-277 causes accumulation of non-farnesylated prelamin A, while AFCMe inhibition of prelamin A maturation causes accumulation of a farnesylated form. We demonstrate that monocytes subjected to FTI-277 treatment and mostly those subjected to AFCMe administration, differentiate towards the osteoclastic lineage more efficiently than untreated monocytes, in terms of number of multinucleated giant cells, mRNA expression of osteoclast-related genes and TRACP 5b activity. On the other hand, the bone resorption activity of osteoclasts obtained in the presence of high prelamin A levels is lower with respect to control osteoclasts. This finding may help the understanding of the osteolytic and osteoporotic processes that characterize progeroid laminopathies.  相似文献   

17.
Loss of trabeculae in cancellous bone is often attributed to a general decline in the bone mass leading to fracture of the thin trabeculae. It has never been investigated whether trabecular perforation may have any other biomechanical mechanism. In this paper, an alternative hypothesis is proposed and tested using a computational model. Taking it as given that osteoclastic resorption is targeted to microdamage, it is hypothesised that the creation of a resorption cavity during normal bone remodelling could cause a stress-concentration in the bone tissue. If the resorption cavities were excessively deep, as is seen during osteoporosis, then this stress concentration may be sufficient to generate more microdamage so that osteoclasts "chase" newly formed damage leading to perforation. If this were true then we should find that, for a given trabecular thickness, there is a critical depth of resorption cavity such that smaller cavities refill whereas deeper cavities cause microdamage accumulation, continued osteoclast activity, and eventual trabecular perforation. Computer simulation is used to test this hypothesis. Using a remodelling stimulus calculated from both strain and damage and a simplified finite element model of a trabeculum with cavities of different sizes, it is predicted that such a critical depth of resorption cavity does indeed exist. Therefore we suggest that an increase in resorption depth relative to the thickness of trabeculae may be responsible for trabecular perforation during osteoporosis, rather than simply trabecular fracture due to insufficient strength.  相似文献   

18.
Cathepsin K is a member of the papain superfamily of cysteine proteases and plays a pivotal role in osteoclast-mediated bone resorption. This enzyme is an excellent target for antiresorptive therapies for osteopenic disorders such as osteoporosis.(1) Although isolated inhibitor studies on purified enzymes is required to discover potent and selective inhibitors of cathepsin K, a quantitative cytochemical assay(2) for cathepsin K would allow inhibitors to be tested on actual osteoclasts within sections of bone. Furthermore cathepsin K activity could be used to identify and analyse osteoclasts at definitive stages of their lifespan. A cytochemical assay is described that localizes osteoclast cathepsin K activity in unfixed, undecalcified cryostat sections of animal and human bone.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) is abundant in bone matrix and has been shown to regulate the activity of osteoblasts and osteoclasts in vitro. To explore the role of endogenous TGF-(beta) in osteoblast function in vivo, we have inhibited osteoblastic responsiveness to TGF-beta in transgenic mice by expressing a cytoplasmically truncated type II TGF-beta receptor from the osteocalcin promoter. These transgenic mice develop an age-dependent increase in trabecular bone mass, which progresses up to the age of 6 months, due to an imbalance between bone formation and resorption during bone remodeling. Since the rate of osteoblastic bone formation was not altered, their increased trabecular bone mass is likely due to decreased bone resorption by osteoclasts. Accordingly, direct evidence of reduced osteoclast activity was found in transgenic mouse skulls, which had less cavitation and fewer mature osteoclasts relative to skulls of wild-type mice. These bone remodeling defects resulted in altered biomechanical properties. The femurs of transgenic mice were tougher, and their vertebral bodies were stiffer and stronger than those of wild-type mice. Lastly, osteocyte density was decreased in transgenic mice, suggesting that TGF-beta signaling in osteoblasts is required for normal osteoblast differentiation in vivo. Our results demonstrate that endogenous TGF-beta acts directly on osteoblasts to regulate bone remodeling, structure and biomechanical properties.  相似文献   

20.
There is increasing evidence that calpain contributes to the reorganization of the cytoskeleton in the integrin-mediated signaling pathway. Osteoclastic bone resorption requires cell-matrix contact, an event mediated by integrin alphavbeta3, and subsequent cytoskeletal reorganization to form characteristic membrane domains such as the sealing zone and ruffled border. In this study, therefore, we investigated whether calpain is involved in osteoclastic bone resorption. Membrane-permeable calpain inhibitors suppress the resorption activity of human osteoclasts, but an impermeable inhibitor does not. Upon the attachment of osteoclasts to bone, micro-calpain is translocated from the cytosolic to the cytoskeletal fraction and is autolytically activated. Both the activation of micro-calpain and the formation of actin-rings, the cytoskeletal structures essential for bone resorption, are inhibited by membrane-permeable calpain inhibitors. The activated micro-calpain in osteoclasts selectively cleaves talin, which links the matrix-recognizing integrin to the actin cytoskeleton. These findings suggest that calpain is a regulator of the bone resorption activity of osteoclasts through reorganization of the cytoskeleton related to actin-ring formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号