首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterotrimeric G proteins transduce signals sensed by transmembrane G protein coupled receptors (GPCRs). A subfamily of G protein βγ subunit types has been shown to selectively translocate from the plasma membrane to internal membranes on receptor activation. Using 4D imaging we show here that Gβγ translocation is not restricted to some subunit types but rather all 12 members of the family of mammalian γ subunits are capable of supporting βγ translocation. Translocation kinetics varies widely depending on the specific γ subunit type, with t(1/2) ranging from 10s to many minutes. Using fluorescence complementation, we show that the β and γ subunits translocate as βγ dimers with kinetics determined by the γ subunit type. The expression patterns of endogenous γ subunit types in HeLa cells, hippocampal neurons and cardiomyocytes are distinctly different. Consistent with these differences, the βγ translocation rates vary widely. βγ translocation rates exhibit the same γ subunit dependent trends regardless of the specific receptor type or cell type showing that the translocation rates are intrinsic to the γ subunit types. βγ complexes with widely different rates of translocation had differential effects on muscarinic stimulation of GIRK channel activity. These results show that G protein βγ translocation is a general response to activation of GPCRs and may play a role in regulating signaling activity.  相似文献   

2.
Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of three subunits α, β, γ mediate activation of multiple intracellular signaling cascades initiated by G protein-coupled receptors (GPCRs). Previously our laboratory identified small molecules that bind to Gβγ and interfere with or enhance binding of select effectors with Gβγ. To understand the molecular mechanisms of selectivity and assess binding of compounds to Gβγ, we used biophysical and biochemical approaches to directly monitor small molecule binding to Gβγ. Surface plasmon resonance (SPR) analysis indicated that multiple compounds bound directly to Gβγ with affinities in the high nanomolar to low micromolar range but with surprisingly slow on and off rate kinetics. While the k(off) was slow for most of the compounds in physiological buffers, they could be removed from Gβγ with mild chaotropic salts or mildly dissociating collision energy in a mass-spectrometer indicating that compound-Gβγ interactions were non-covalent. Finally, at concentrations used to observe maximal biological effects the stoichiometry of binding was 1:1. The results from this study show that small molecule modulation of Gβγ-effector interactions is by specific direct non-covalent and reversible binding of small molecules to Gβγ. This is highly relevant to development of Gβγ targeting as a therapeutic approach since reversible, direct binding is a prerequisite for drug development and important for specificity.  相似文献   

3.
The G protein-coupled receptor for PTH and PTH-related protein (PTH1R) signals via many intracellular pathways. The purpose of this work is to investigate a G protein binding site on an intracellular domain of the PTH1R. The carboxy-terminal, cytoplasmic tail of the PTH1R fused to glutathione-S-transferase interacts with Gi/o proteins in vitro. All three subunits of the heterotrimer interact with the receptor C-tail. Activation of the heterotrimeric complex with GTPgammaS has no effect on Gbetagamma interactions, but markedly disrupts binding of the Galphai/o subunits to the receptor tail, suggesting that direct Gbetagamma binding indirectly links Galpha subunits to this region of the receptor. Gbetagamma subunits alone bind the C-tail with an affinity that is comparable to the heterotrimeric G protein complex. G protein complexes consisting of Galphashis6-beta1gamma2 and Galphaqhis6-beta1gamma2 also interact with the PTH1R tail in vitro. The Gbetagamma interaction domain is located on the juxta-membrane region of the tail between amino acids 468 and 491. Mutations that disrupt Gbetagamma interactions block PTH signaling via phospholipase Cbeta/[Ca2+]i and MAPK and markedly reduce signaling via adenylyl cyclase/cAMP. Herein, we define a domain on the PTH1R that is capable of binding G protein heterotrimeric complexes via direct Gbetagamma interactions.  相似文献   

4.
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.  相似文献   

5.
Park MS  Smrcka AV  Stern HA 《Proteins》2011,79(2):518-527
Previous NMR experiments on unbound G protein βγ heterodimer suggested that particular residues in the binding interface are mobile on the nanosecond timescale. In this work we performed nanosecond‐timescale molecular dynamics simulations to investigate conformational changes and dynamics of Gβγ in the presence of several binding partners: a high‐affinity peptide (SIGK), phosducin, and the GDP‐bound α subunit. In these simulations, the high mobility of GβW99 was reduced by SIGK, and it appeared that a tyrosine might stabilize GβW99 by hydrophobic or aromatic stacking interactions in addition to hydrogen bonds. Simulations of the phosducin‐Gβγ complex showed that the mobility of GβW99 was restricted, consistent with inferences from NMR. However, large‐scale conformational changes of Gβγ due to binding, which were hypothesized in the NMR study, were not observed in the simulations, most likely due to their short (nanosecond) duration. A pocket consisting of hydrophobic amino acids on Gα appears to restrict GβW99 mobility in the crystal structure of the Gαβγ? heterotrimer. The simulation trajectories are consistent with this idea. However, local conformational changes of residues GβW63, GβW211, GβW297, GβW332, and GβW339 were detected during the MD simulations. As expected, the magnitude of atomic fluctuations observed in simulations was greater for α than for the βγ subunits, suggesting that α has greater flexibility. These observations support the notion that to maintain the high mobility of GβW99 observed by solution NMR requires that the Gβ–α interface must open up on time scale longer than can be observed in nanosecond scale simulations. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Protein kinase D (PKD) is activated within cells by stimulation of multiple G protein coupled receptors (GPCR). Earlier studies demonstrated a role for PKC to mediate rapid activation loop phosphorylation-dependent PKD activation. Subsequently, a novel PKC-independent pathway in response to Gαq-coupled GPCR stimulation was identified. Here, we examined further the specificity and PKC-dependence of PKD activation using COS-7 cells cotransfected with different Gq-family Gα and stimulated with aluminum fluoride (AlF4). PKD activation was measured by kinase assays, and Western blot analysis of activation loop sites Ser744, a prominent and rapid PKC transphosphorylation site, and Ser748, a site autophosphorylated in the absence of PKC signaling. Treatment with AlF4 potently induced PKD activation and Ser744 and Ser748 phosphorylation, in the presence of cotransfected Gαq, Gα11, Gα14 or Gα15. These treatments achieved PKD activation loop phosphorylation similar to the maximal levels obtained by stimulation with the phorbol ester, PDBu. Preincubation with the PKC inhibitor GF1 potently blocked Gα11-, Gα14-, and Gα15-mediated enhancement of Ser748 phosphorylation induced by AlF4, and largely abolished Ser744 phosphorylation. In contrast, Ser748 phosphorylation was almost completely intact, and Ser744 phosphorylation was significantly activated in cells cotransfected with Gαq. Importantly, the differential Ser748 phosphorylation was also promoted by treatment of Swiss 3T3 cells with Pasteurella multocida toxin, a selective activator of Gαq but not Gα11. Taken together, our results suggest that Gαq, but not the closely related Gα11, promotes PKD activation in response to GPCR ligands in a unique manner leading to PKD autophosphorylation at Ser748.  相似文献   

7.
Accumulating evidence suggests that heterotrimeric G protein activation may not require G protein subunit dissociation. Results presented here provide evidence for a subunit dissociation-independent mechanism for G protein activation by a receptor-independent activator of G protein signaling, AGS8. AGS8 is a member of the AGS group III family of AGS proteins thought to activate G protein signaling primarily through interactions with Gbetagamma subunits. Results are presented demonstrating that AGS8 binds to the effector and alpha subunit binding "hot spot" on Gbetagamma yet does not interfere with Galpha subunit binding to Gbetagamma or phospholipase C beta2 activation. AGS8 stimulates activation of phospholipase C beta2 by heterotrimeric Galphabetagamma and forms a quaternary complex with Galpha(i1), Gbeta(1)gamma(2), and phospholipase C beta2. AGS8 rescued phospholipase C beta binding and regulation by an inactive beta subunit with a mutation in the hot spot (beta(1)(W99A)gamma(2)) that normally prevents binding and activation of phospholipase C beta2. This demonstrates that, in the presence of AGS8, the hot spot is not used for Gbetagamma interactions with phospholipase C beta2. Mutation of an alternate binding site for phospholipase C beta2 in the amino-terminal coiled-coil region of Gbetagamma prevented AGS8-dependent phospholipase C binding and activation. These data implicate a mechanism for AGS8, and potentially other Gbetagamma binding proteins, for directing Gbetagamma signaling through alternative effector activation sites on Gbetagamma in the absence of subunit dissociation.  相似文献   

8.
9.
Ggamma11 is an unusual guanine nucleotide-binding regulatory protein (G protein) subunit. To study the effect of different Gbeta-binding partners on gamma11 function, four recombinant betagamma dimers, beta1gamma2, beta4gamma2, beta1gamma11, and beta4gamma11, were characterized in a receptor reconstitution assay with the G(q)-linked M1 muscarinic and the G(i1)-linked A1 adenosine receptors. The beta4gamma11 dimer was up to 30-fold less efficient than beta4gamma2 at promoting agonist-dependent binding of [35S]GTPgammaS to either alpha(q) or alpha(i1). Using a competition assay to measure relative affinities of purified betagamma dimers for alpha, the beta4gamma11 dimer had a 15-fold lower affinity for G(i1) alpha than beta4gamma2. Chromatographic characterization of the beta4gamma11 dimer revealed that the betagamma is stable in a heterotrimeric complex with G(i1) alpha; however, upon activation of alpha with MgCl2 and GTPgammaS under nondenaturing conditions, the beta4 and gamma11 subunits dissociate. Activation of purified G(i1) alpha:beta4gamma11 with Mg+2/GTPgammaS following reconstitution into lipid vesicles and incubation with phospholipase C (PLC)-beta resulted in stimulation of PLC-beta activity; however, when this activation preceded reconstitution into vesicles, PLC-beta activity was markedly diminished. In a membrane coupling assay designed to measure the ability of G protein to promote a high-affinity agonist-binding conformation of the A1 adenosine receptor, beta4gamma11 was as effective as beta4gamma2 when coexpressed with G(i1) alpha and receptor. However, G(i1) alpha:beta4gamma11-induced high-affinity binding was up to 20-fold more sensitive to GTPgammaS than G(i1) alpha:beta4gamma2-induced high-affinity binding. These results suggest that the stability of the beta4gamma11 dimer can modulate G protein activity at the receptor and effector.  相似文献   

10.
《Current biology : CB》1999,9(17):971-S2
Receptors of the seven transmembrane domain family are coupled to heterotrimeric G proteins [1]. Binding of ligand to these receptors induces dissociation of the heterotrimeric complex into free GTP–Gα and Gβγ subunits, which then interact with their respective effector molecules to stimulate specific cellular responses. In some cases, these cellular responses involve mitogenic signalling [2]. The mitogen-activated protein (MAP) kinase cascade is initiated by the protein kinase cRaf1 and links growth factor receptor signalling to cell growth and differentiation [3]. The main activator of cRaf1 is the small GTP-binding protein Ras [4], and the binding of cRaf1 to GTP–Ras translocates cRaf1 to the plasma membrane, where it is activated [5]. It has been reported that cRaf1 associates directly with the β subunit of heterotrimeric G proteins in vitro, and with the βγ subunit complex in vivo[6], but the role of this association is not yet understood. Here, we show that cRaf1 associates with Gβ1γ2, and that this association in mammalian cells is significantly enhanced when active p21Ras is present or when cRaf1 is otherwise targeted to the membrane. Association with Gβ1γ2 has no effect on the kinase activity of cRaf1, but cRaf1 can affect Gβγ-mediated signalling events. Thus, membrane-localised cRaf1 inhibits G-protein-coupled receptor (GPCR)-stimulated activation of phospholipase Cβ (PLCβ) by sequestration of Gβγ subunits, an effect also observed with endogenous levels of cRaf1. Our data suggest that cRaf1 may be an important regulator of signalling by Gβγ, particularly in those GPCR systems that stimulate the MAP kinase cascade through the activation of p21Ras.  相似文献   

11.
The activation of Gα subunits of heterotrimeric G proteins by G protein-coupled receptors (GPCRs) is a critical event underlying a variety of biological responses. Understanding how G proteins are activated will require structural and biochemical analyses of GPCRs complexed to their G protein partners, together with structure-function studies of Gα mutants that shed light on the different steps in the activation pathway. Previously, we reported that the substitution of a glycine for a proline at position 56 within the linker region connecting the helical and GTP-binding domains of a Gα chimera, designated αT*, yields a more readily exchangeable state for guanine nucleotides. Here we show that GDP-GTP exchange on αT*(G56P), in the presence of the light-activated GPCR, rhodopsin (R*), is less sensitive to the β1γ1 subunit complex than to wild-type αT*. We determined the X-ray crystal structure for the αT*(G56P) mutant and found that the G56P substitution leads to concerted changes that are transmitted to the conformationally sensitive switch regions, the α4-β6 loop, and the β6 strand. The α4-β6 loop has been proposed to be a GPCR contact site that signals to the TCAT motif and weakens the binding of the guanine ring of GDP, whereas the switch regions are the contact sites for the β1γ1 complex. Collectively, these biochemical and structural data lead us to suggest that αT*(G56P) may be adopting a conformation that is normally induced within Gα subunits by the combined actions of a GPCR and a Gβγ subunit complex during the G protein activation event.  相似文献   

12.
Higher plant roots, leaf mesophyll tissue, protoplasts as well as green algae are able to reduce extra-cellular ferricyanide and ferric chelates. In roots of dicotyledonous and nongraminaceous, monocotyledonous plants, the rate of ferric reduction is increased by iron deficiency. This reduction is an obligatory prerequisite for iron uptake and is mediated by redox systems localized on the plasma membrane. Plasma membrane-bound iron reductase systems catalyze the transmembrane electron transport from cytosolic reduced pyridine nucleotides to extracellular iron compounds. Natural and synthetic ferric complexes can act as electron acceptors.This paper gives an overview about the present knowledge on iron reductase systems at the plant plasma membrane with special emphasis on biochemical characteristics and localisation.  相似文献   

13.
Recently,the effect of ligand receptor interaction on the membrane structure of liposomes has been studied extensively,However,little is known about how it exists on biological membranes,In this paper,the effect of Concanavalin A(ConA) receptorinteratcion on the structure of cell membranes was studied by Circular DIchrosim(CD) and 31P Nuclear Magnetic Resonance(NMR).CD results of both the purified macrophage membranes and human erythrocyte hgosts(EG) showed that the conformation of membrane proteins changed after ConA binding.For further research,31P-NMR was used to detect the orgainzation of phosp[holipid molecules on macrophage membranes.After ConA binding,the tendercy to form non bilayer structure increased with the amount of ConA.The changes of 31P-NMR spectra of living macrophages might be partly due to the above stated reason too.In addition,ConA-receptor interaction also induced similar results of 31P-NMR spectra in EG.In contrast,wheat germ agglutinin (WGA),another kind of lectin,rarely showed the same influence.  相似文献   

14.
Sugar beet ( Beta vulgaris L.) root suspension-cultured cells were converted to protoplasts which responded to fusicoccin (FC) by a rise in cytoplasmic pH (pHcyt) averaging 0.25 units in the fluorimetric assay. This effect was blocked by erythrosin B, a specific inhibitor of the plasma membrane H+-ATPase. A protein kinase inhibitor, staurosporine also caused cytosolic alkalinization that was sensitive to H+-ATPase inhibitors. Most strikingly, the effect of staurosporine was suppressed by fusicoccin and vice versa. Addition of okadaic acid, entailing overall protein phosphorylation, also led to H+-ATPase activation, whereupon fusicoccin lost its effect on proton transport. In parallel, kinetic and inhibitor analyses demonstrated that FC binding to the protoplast plasma membrane involved two sites with dissociation constants of 1 n M and 0.2 μ M and was indifferent to phosphorylation and dephosphorylation inhibitors. Thus, it could be concluded that (1) the effect of FC on cytoplasmic pH probably depends on the phosphorylation state of plasma membrane proteins and may have either sign; (2) the activation of H+-ATPase by FC most likely proceeds directly through conformational receptor-enzyme interaction.  相似文献   

15.
γ-Secretase is an intramembrane-cleaving protease related to the etiology of Alzheimer disease. γ-Secretase is a membrane protein complex composed of presenilin (PS) and three indispensable subunits: nicastrin, Aph-1, and Pen-2. PS functions as a protease subunit forming a hydrophilic catalytic pore structure within the lipid bilayer. However, it remains unclear how other subunits are involved in the pore formation. Here, we show that the hydrophilic pore adopted with an open conformation has already been formed by PS within the immature γ-secretase complex. The binding of the subunits induces the close proximity between transmembrane domains facing the catalytic pore. We propose a model in which the γ-secretase subunits restrict the arrangement of the transmembrane domains of PS during the formation of the functional structure of the catalytic pore.  相似文献   

16.
Transduction of a signal from an extracellular peptide hormone to produce an intracellular response is often mediated by a cell surface receptor, which is usually a glycoprotein. The secondary intracellular signal(s) generated after hormone binding to the receptor have been intensively studied. The nature of the primary signal generated by ligand binding to the receptor is understood less well in most cases. The particular case of the epidermal growth factor (EGF) receptor is analyzed, and evidence for or against two dissimilar models of primary signal transduction is reviewed. Evidence for the most widely accepted current model is found to be unconvincing. Evidence for the other model is substantial but indirect; a direct test of this model remains to be done.  相似文献   

17.
The expression of human G protein-coupled receptors (GPCRs) in Saccharomyces cerevisiae containing chimeric yeast/mammalian Gα subunits provides a useful tool for the study of GPCR activation. In this study, we used a one-GPCR-one-G protein yeast screening method in combination with molecular modeling and mutagenesis studies to decipher the interaction between GPCRs and the C-terminus of different α-subunits of G proteins. We chose the human adenosine A2B receptor (hA2BR) as a paradigm, a typical class A GPCR that shows promiscuous behavior in G protein coupling in this yeast system. The wild-type hA2BR and five mutant receptors were expressed in 8 yeast strains with different humanized G proteins, covering the four major classes: Gαi, Gαs, Gαq, and Gα12. Our experiments showed that a tyrosine residue (Y) at the C-terminus of the Gα subunit plays an important role in controlling the activation of GPCRs. Receptor residues R1033.50 and I1073.54 are vital too in G protein-coupling and the activation of the hA2BR, whereas L213IL3 is more important in G protein inactivation. Substitution of S2356.36 to alanine provided the most divergent G protein-coupling profile. Finally, L2366.37 substitution decreased receptor activation in all G protein pathways, although to a different extent. In conclusion, our findings shed light on the selectivity of receptor/G protein coupling, which may help in further understanding GPCR signaling.  相似文献   

18.
Spliceosomal Prp38 proteins contain a conserved amino-terminal domain, but only higher eukaryotic orthologs also harbor a carboxy-terminal RS domain, a hallmark of splicing regulatory SR proteins. We show by crystal structure analysis that the amino-terminal domain of human Prp38 is organized around three pairs of antiparallel α-helices and lacks similarities to RNA-binding domains found in canonical SR proteins. Instead, yeast two-hybrid analyses suggest that the amino-terminal domain is a versatile protein–protein interaction hub that possibly binds 12 other spliceosomal proteins, most of which are recruited at the same stage as Prp38. By quantitative, alanine surface-scanning two-hybrid screens and biochemical analyses we delineated four distinct interfaces on the Prp38 amino-terminal domain. In vitro interaction assays using recombinant proteins showed that Prp38 can bind at least two proteins simultaneously via two different interfaces. Addition of excess Prp38 amino-terminal domain to in vitro splicing assays, but not of an interaction-deficient mutant, stalled splicing at a precatalytic stage. Our results show that human Prp38 is an unusual SR protein, whose amino-terminal domain is a multi-interface protein–protein interaction platform that might organize the relative positioning of other proteins during splicing.  相似文献   

19.
Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca2+-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca2+-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR–lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte–mediated immune responses.  相似文献   

20.
Rat costochondral cartilage growth plate chondrocytes exhibit cell sex-specific responses to 17β-estradiol (E2), testosterone, and dihydrotestosterone (DHT). Mechanistically, E2 and DHT stimulate proliferation and extracellular matrix synthesis in chondrocytes from female and male rats, respectively, by signaling through protein kinase C (PKC) and phospholipase C (PLC). Estrogen receptors (ERα; ERβ) and androgen receptors (ARs) are present in both male and female cells, but it is not known whether they interact to elicit sex-specific signaling. We used specific agonists and antagonists of these receptors to examine the relative contributions of ERs and ARs in membrane-mediated E2 signaling in female chondrocytes and DHT signaling in male chondrocytes. PKC activity in female chondrocytes was stimulated by agonists of ERα and ERβ and required intact caveolae; PKC activity was inhibited by the E2 enantiomer and by an inhibitor of ERβ. Western blots of cell lysates co-immunoprecipitated for ERα suggested the formation of a complex containing both ERα and ERß with E2 treatment. DHT and DHT agonists activated PKC in male cells, while AR inhibition blocked the stimulatory effect of DHT on PKC. Inhibition of ERα and ERβ also blocked PKC activation by DHT. Western blots of whole-cell lysates, plasma membranes, and caveolae indicated the translocation of AR to the plasma membrane and specifically to caveolae with DHT treatment. These results suggest that E2 and DHT promote chondrocyte differentiation via the ability of ARs and ERs to form a complex. The results also indicate that intact caveolae and palmitoylation of the membrane receptor(s) or membrane receptor complex containing ERα and ERβ is required for E2 and DHT membrane-associated PKC activity in costochondral cartilage cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号