首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurotransmitter GABA regulates many aspects of inhibitory synapse development. We tested the hypothesis that GABAA receptors (GABAARs) work together with the synaptic adhesion molecule neuroligin 2 (NL2) to regulate synapse formation in different subcellular compartments. We investigated mice (“γ2 knockdown mice”) with an engineered allele of the GABAAR γ2 subunit gene which produced a mosaic expression of synaptic GABAARs in neighboring neurons, causing a strong imbalance in synaptic inhibition. Deletion of the γ2 subunit did not abolish synapse formation or the targeting of NL2 to distinct types of perisomatic and axo-dendritic contacts. Thus synaptic localization of NL2 does not require synaptic GABAARs. However, loss of the γ2 subunit caused a selective decrease in the number of axo-dendritic synapses on cerebellar Purkinje cells and cortical pyramidal neurons, whereas perisomatic synapses were not significantly affected. Notably, γ2-positive cells had increased axo-dendritic innervation compared with both γ2-negative and wild-type counterparts. Moreover heterologous synapses on spines, that are found after total deletion of GABAARs from all Purkinje cells, were rare in cerebella of γ2 knockdown mice. These findings reveal a selective role of γ2 subunit-containing GABAARs in regulating synapse development in distinct subcellular compartments, and support the hypothesis that the refinement of axo-dendritic synapses is regulated by activity-dependent competition between neighboring neurons.  相似文献   

2.
Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents or synaptic vesicle exocytosis as measured in the Calyx of Held synapse. At 2-4 weeks of age, however, CSPalpha-deficient mice develop a progressive, fatal sensorimotor disorder. The neuromuscular junctions and Calyx synapses of CSPalpha-deficient mice exhibit increasing neurodegenerative changes, synaptic transmission becomes severely impaired, and the mutant mice die at approximately 2 months of age. Our data suggest that CSPalpha is not essential for the normal operation of Ca2+ channels or exocytosis but acts as a presynaptic chaperone that maintains continued synaptic function, raising the possibility that enhanced CSPalpha function could attenuate neurodegenerative diseases.  相似文献   

3.
4.
Neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs) are postsynaptic cell adhesion molecules that bind to presynaptic neurexins. In this paper, we show that short hairpin ribonucleic acid-mediated knockdowns (KDs) of LRRTM1, LRRTM2, and/or NL-3, alone or together as double or triple KDs (TKDs) in cultured hippocampal neurons, did not decrease synapse numbers. In neurons cultured from NL-1 knockout mice, however, TKD of LRRTMs and NL-3 induced an ~40% loss of excitatory but not inhibitory synapses. Strikingly, synapse loss triggered by the LRRTM/NL deficiency was abrogated by chronic blockade of synaptic activity as well as by chronic inhibition of Ca(2+) influx or Ca(2+)/calmodulin (CaM) kinases. Furthermore, postsynaptic KD of CaM prevented synapse loss in a cell-autonomous manner, an effect that was reversed by CaM rescue. Our results suggest that two neurexin ligands, LRRTMs and NLs, act redundantly to maintain excitatory synapses and that synapse elimination caused by the absence of NLs and LRRTMs is promoted by synaptic activity and mediated by a postsynaptic Ca(2+)/CaM-dependent signaling pathway.  相似文献   

5.
The inbred strains C57BL/6J and DBA/2J (DBA) display striking differences in a number of behavioral tasks depending on hippocampal function, such as contextual memory. Historically, this has been explained through differences in postsynaptic protein expression underlying synaptic transmission and plasticity. We measured the synaptic hippocampal protein content (iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) and mass spectrometry), CA1 synapse ultrastructural morphology, and synaptic functioning in adult C57BL/6J and DBA mice. DBA mice showed a prominent decrease in the Ras-GAP calcium-sensing protein RASAL1. Furthermore, expression of several presynaptic markers involved in exocytosis, such as syntaxin (Stx1b), Ras-related proteins (Rab3a/c), and rabphilin (Rph3a), was reduced. Ultrastructural analysis of CA1 hippocampal synapses showed a significantly lower number of synaptic vesicles and presynaptic cluster size in DBA mice, without changes in postsynaptic density or active zone. In line with this compromised presynaptic morphological and molecular phenotype in DBA mice, we found significantly lower paired-pulse facilitation and enhanced short term depression of glutamatergic synapses, indicating a difference in transmitter release and/or refilling mechanisms. Taken together, our data suggest that in addition to strain-specific postsynaptic differences, the change in dynamic properties of presynaptic transmitter release may underlie compromised synaptic processing related to cognitive functioning in DBA mice.  相似文献   

6.
Neuroligins are cell adhesion molecules that interact with neurexins on adjacent cells to promote glutamatergic and GABAergic synapse formation in culture. We show here that neuroligin enhances nicotinic synapses on neurons in culture, increasing synaptic input. When neuroligin is overexpressed in neurons, the extracellular domain induces presynaptic specializations in adjacent cholinergic neurons as visualized by SV2 puncta. The intracellular domain is required to translate the SV2 puncta into synaptic input as reflected by increases in the frequency of spontaneous mini-synaptic currents. The PDZ-binding motif of neuroligin is not needed for these effects. Together, the extracellular and proximal intracellular domains of neuroligin are sufficient to induce presynaptic specializations, align them over postsynaptic receptor clusters, and increase synaptic function. Manipulation of endogenous neuroligin with beta-neurexin-expressing cells confirms its presence; repressing function with dominant negative constructs and inhibitory shRNA shows that endogenous neuroligin helps confer functionality on existing nicotinic synaptic contacts. Endogenous neuroligin does not appear to be required, however, for initial formation of the contacts, suggesting that other components under these conditions can also initiate synapse formation. The results indicate that postsynaptic neuroligin is important for functional nicotinic synapses on neurons and that the effects achieved will likely depend on neuroligin levels.  相似文献   

7.
Synapses, the basic units of communication in the brain, require complex molecular machinery for neurotransmitter release and reception. Whereas numerous components of excitatory postsynaptic sites have been identified, relatively few proteins are known that function at inhibitory postsynaptic sites. One such component is neuroligin-2 (NL2), an inhibitory synapse-specific cell surface protein that functions in cell adhesion and synaptic organization via binding to neurexins. In this study, we used a transgenic tandem affinity purification and mass spectrometry strategy to isolate and characterize NL2-associated complexes. Complexes purified from brains of transgenic His6-FLAG-YFP-NL2 mice showed enrichment in the Gene Ontology terms cell-cell signaling and synaptic transmission relative to complexes purified from wild type mice as a negative control. In addition to expected components including GABA receptor subunits and gephyrin, several novel proteins were isolated in association with NL2. Based on the presence of multiple components involved in trafficking and endocytosis, we showed that NL2 undergoes dynamin-dependent endocytosis in response to soluble ligand and colocalizes with VPS35 retromer in endosomes. Inhibitory synapses in brain also present a particular challenge for imaging. Whereas excitatory synapses on spines can be imaged with a fluorescent cell fill, inhibitory synapses require a molecular tag. We find the His6-FLAG-YFP-NL2 to be a suitable tag, with the unamplified YFP signal localizing appropriately to inhibitory synapses in multiple brain regions including cortex, hippocampus, thalamus, and basal ganglia. Altogether, we characterize NL2-associated complexes, demonstrate regulated trafficking of NL2, and provide tools for further proteomic and imaging studies of inhibitory synapses.  相似文献   

8.
Mutations in presenilins are the major cause of familial Alzheimer disease, but the precise pathogenic mechanism by which presenilin (PS) mutations cause synaptic dysfunction leading to memory loss and neurodegeneration remains unclear. Using autaptic hippocampal cultures from transgenic mice expressing human PS1 with the A246E mutation, we demonstrate that mutant PS1 significantly depressed the amplitude of evoked alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptor-mediated synaptic currents. Analysis of the spontaneous miniature synaptic activity revealed a lower frequency of miniature currents but normal miniature amplitude. Both alterations could be rescued by the application of a gamma-secretase blocker. On the other hand, the application of synthetic soluble Abeta42 in wild-type neurons induced the PS1 mutant phenotype on synaptic strength. Together, these findings strongly suggest that the expression of mutant PS1 in cultured neurons depresses synaptic transmission by causing a physical reduction in the number of synapses. This hypothesis is consistent with morphometic and semiquantitative immunohistochemical analysis, revealing a decrease in synaptophysin-positive puncta in PS1 mutant hippocampal neurons.  相似文献   

9.
Cadherins and neuroligins (NLs) represent two families of cell adhesion proteins that are essential for the establishment of synaptic connections in vitro; however, it remains unclear whether these proteins act in concert to regulate synapse density. Using a combination of overexpression and knockdown analyses in primary hippocampal neurons, we demonstrate that NL1 and N-cadherin promote the formation of glutamatergic synapses through a common functional pathway. Analysis of the spatial relationship between N-cadherin and NL1 indicates that in 14-day in vitro cultures, almost half of glutamatergic synapses are associated with both proteins, whereas only a subset of these synapses are associated with N-cadherin or NL1 alone. This suggests that NL1 and N-cadherin are spatially distributed in a manner that enables cooperation at synapses. In young cultures, N-cadherin clustering and its association with synaptic markers precede the clustering of NL1. Overexpression of N-cadherin at this time point enhances NL1 clustering and increases synapse density. Although N-cadherin is not sufficient to enhance NL1 clustering and synapse density in more mature cultures, knockdown of N-cadherin at later time points significantly attenuates the density of NL1 clusters and synapses. N-cadherin overexpression can partially rescue synapse loss in NL1 knockdown cells, possibly due to the ability of N-cadherin to recruit NL2 to glutamatergic synapses in these cells. We demonstrate that cadherins and NLs can act in concert to regulate synapse formation.  相似文献   

10.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron–neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin‐deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin‐deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma‐aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age‐matched wild‐type neurons during the first 3 weeks in culture. These results demonstrate that neuron‐specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 547–557, 1999  相似文献   

11.
Bozdagi O  Shan W  Tanaka H  Benson DL  Huntley GW 《Neuron》2000,28(1):245-259
It is an open question whether new synapses form during hippocampal LTP. Here, we show that late-phase LTP (L-LTP) is associated with a significant increase in numbers of synaptic puncta identified by synaptophysin and N-cadherin, an adhesion protein involved in synapse formation during development. During potentiation, protein levels of N-cadherin are significantly elevated and N-cadherin dimerization is enhanced. The increases in synaptic number and N-cadherin levels are dependent on cAMP-dependent protein kinase (PKA) and protein synthesis, both of which are also required for L-LTP. Blocking N-cadherin adhesion prevents the induction of L-LTP, but not the early-phase of LTP (E-LTP). Our data suggest that N-cadherin is synthesized during the induction of L-LTP and recruited to newly forming synapses. N-cadherin may play a critical role in L-LTP by holding nascent pre-and postsynaptic membranes in apposition, enabling incipient synapses to acquire function and contribute to potentiation.  相似文献   

12.
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fiber-granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fibers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These findings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.  相似文献   

13.
Neuroligins enhance synapse formation in vitro, but surprisingly are not required for the generation of synapses in vivo. We now show that in cultured neurons, neuroligin-1 overexpression increases excitatory, but not inhibitory, synaptic responses, and potentiates synaptic NMDAR/AMPAR ratios. In contrast, neuroligin-2 overexpression increases inhibitory, but not excitatory, synaptic responses. Accordingly, deletion of neuroligin-1 in knockout mice selectively decreases the NMDAR/AMPAR ratio, whereas deletion of neuroligin-2 selectively decreases inhibitory synaptic responses. Strikingly, chronic inhibition of NMDARs or CaM-Kinase II, which signals downstream of NMDARs, suppresses the synapse-boosting activity of neuroligin-1, whereas chronic inhibition of general synaptic activity suppresses the synapse-boosting activity of neuroligin-2. Taken together, these data indicate that neuroligins do not establish, but specify and validate, synapses via an activity-dependent mechanism, with different neuroligins acting on distinct types of synapses. This hypothesis reconciles the overexpression and knockout phenotypes and suggests that neuroligins contribute to the use-dependent formation of neural circuits.  相似文献   

14.
Neuronal hyperactivity is a key feature of early stages of Alzheimer''s disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia‐synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super‐resolution microscopy, 3D‐live imaging of co‐cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aβ oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical “eat‐me” signal. These apoptotic‐like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aβ oligomer‐induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer‐TREM2 signaling in microglia‐synapse engulfment in the hAPP NL‐F knock‐in mouse model of AD. Higher levels of apoptotic‐like synapses in mice as well as humans that carry TREM2 loss‐of‐function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aβ‐relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.  相似文献   

15.
N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses.  相似文献   

16.
Remodeling of synaptic actin induced by photoconductive stimulation.   总被引:11,自引:0,他引:11  
M A Colicos  B E Collins  M J Sailor  Y Goda 《Cell》2001,107(5):605-616
Use-dependent synapse remodeling is thought to provide a cellular mechanism for encoding durable memories, yet whether activity triggers an actual structural change has remained controversial. We use photoconductive stimulation to demonstrate activity-dependent morphological synaptic plasticity by video imaging of GFP-actin at individual synapses. A single tetanus transiently moves presynaptic actin toward and postsynaptic actin away from the synaptic junction. Repetitive spaced tetani induce glutamate receptor-dependent stable restructuring of synapses. Presynaptic actin redistributes and forms new puncta that label for an active synapse marker FM5-95 within 2 hr. Postsynaptic actin sprouts projections toward the new presynaptic actin puncta, resembling the axon-dendrite interaction during synaptogenesis. Our results indicate that activity-dependent presynaptic structural plasticity facilitates the formation of new active presynaptic terminals.  相似文献   

17.
Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat‐me" signal that initiates glia‐mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal‐specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well‐known "eat‐me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post‐synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post‐synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post‐synapse elimination. Moreover, we found that phosphatidylserine is used for microglia‐mediated pruning of inhibitory post‐synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat‐me" signal for inhibitory post‐synapse elimination.  相似文献   

18.
Sweeney ST  Davis GW 《Neuron》2002,36(3):403-416
In a genetic screen for genes that control synapse development, we have identified spinster (spin), which encodes a multipass transmembrane protein. spin mutant synapses reveal a 200% increase in bouton number and a deficit in presynaptic release. We demonstrate that spin is expressed in both nerve and muscle and is required both pre- and postsynaptically for normal synaptic growth. We have localized Spin to a late endosomal compartment and present evidence for altered endosomal/lysosomal function in spin. We also present evidence that synaptic overgrowth in spin is caused by enhanced/misregulated TGF-beta signaling. TGF-beta receptor mutants show dose-dependent suppression of synaptic overgrowth in spin. Furthermore, mutations in Dad, an inhibitory Smad, cause synapse overgrowth. We present a model for synaptic growth control with implications for the etiology of lysosomal storage and neurodegenerative disease.  相似文献   

19.
Synapse formation is regulated by the signaling adaptor GIT1   总被引:10,自引:0,他引:10       下载免费PDF全文
Dendritic spines in the central nervous system undergo rapid actin-based shape changes, making actin regulators potential modulators of spine morphology and synapse formation. Although several potential regulators and effectors for actin organization have been identified, the mechanisms by which these molecules assemble and localize are not understood. Here we show that the G protein-coupled receptor kinase-interacting protein (GIT)1 serves such a function by targeting actin regulators and locally modulating Rac activity at synapses. In cultured hippocampal neurons, GIT1 is enriched in both pre- and postsynaptic terminals and targeted to these sites by a novel domain. Disruption of the synaptic localization of GIT1 by a dominant-negative mutant results in numerous dendritic protrusions and a significant decrease in the number of synapses and normal mushroom-shaped spines. The phenotype results from mislocalized GIT1 and its binding partner PIX, an exchange factor for Rac. In addition, constitutively active Rac shows a phenotype similar to the GIT1 mutant, whereas dominant-negative Rac inhibits the dendritic protrusion formation induced by mislocalized GIT1. These results demonstrate a novel function for GIT1 as a key regulator of spine morphology and synapse formation and point to a potential mechanism by which mutations in Rho family signaling leads to decreased neuronal connectivity and cognitive defects in nonsyndromic mental retardation.  相似文献   

20.
The nectin-afadin system is a novel cell-cell adhesion system that organizes adherens junctions cooperatively with the cadherin-catenin system in epithelial cells. Nectin is an immunoglobulin-like adhesion molecule, and afadin is an actin filament-binding protein that connects nectin to the actin cytoskeleton. Nectin has four isoforms (-1, -2, -3, and -4). Each nectin forms a homo-cis-dimer followed by formation of a homo-trans-dimer, but nectin-3 furthermore forms a hetero-trans-dimer with nectin-1 or -2, and the formation of each hetero-trans-dimer is stronger than that of each homo-trans-dimer. We show here that at the synapses between the mossy fiber terminals and dendrites of pyramidal cells in the CA3 area of adult mouse hippocampus, the nectin-afadin system colocalizes with the cadherin-catenin system, and nectin-1 and -3 asymmetrically localize at the pre- and postsynaptic sides of puncta adherentia junctions, respectively. During development, nectin-1 and -3 asymmetrically localize not only at puncta adherentia junctions but also at synaptic junctions. Inhibition of the nectin-based adhesion by an inhibitor of nectin-1 in cultured rat hippocampal neurons results in a decrease in synapse size and a concomitant increase in synapse number. These results indicate an important role of the nectin-afadin system in the formation of synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号