首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
FK506结合蛋白12.6(FKBP12.6)能够结合并调控钙离子释放通道兰尼碱受体2型(RyR2)的开放,可能是儿茶酚胺分泌的重要调控器.利用FKBP12.6敲除小鼠模型,我们研究了FKBP12.6在肾上腺嗜铬细胞胞吐中的作用.结果表明,FKBP12.6在小鼠肾上腺嗜铬细胞中表达,而敲除FKBP12.6小鼠的嗜铬细胞中有正常的去极化引起的钙电流和胞吐作用.然而,FKBP12.6敲除会导致嗜铬细胞中出现增强的咖啡因引起的细胞整体钙瞬变和咖啡因引起的胞吐作用.结果提示,FKBP12.6调控肾上腺嗜铬细胞儿茶酚胺的分泌,这种调控作用是通过调节钙离子的释放而实现的.FKBP12.6是嗜铬细胞分泌的重要蛋白.  相似文献   

2.
Ca2+对骨骼肌钙释放通道的调节   总被引:4,自引:0,他引:4  
Han HM  Yin CC 《生理科学进展》2006,37(2):132-135
钙释放通道(calcium release channel)又称Ryanodine受体(RyR),是细胞内质网膜上介导细胞内钙信号转导的离子通道。RyR1在骨骼肌细胞的兴奋-收缩偶联过程中起重要作用,是肌质网快速释放Ca^2+的通道。许多调节因素,如一些内源性蛋白(FK结合蛋白、钙调素、钙结合蛋白)和一些离子(Ca^2+、Mg^2+),通过不同的作用位点与RyR1结合,调控RyR1的结构与功能。研究表明,Ca^2+是众多调节RyR1因素中的核心成分和前提条件,其对RyR1的结构与功能有重要的调控作用。  相似文献   

3.
阿诺碱受体(RyR)是心肌细胞等可兴奋细胞中重要的Ca2+释放受体,在维持细胞的兴奋性和生理功能方面起重要作用.研究发现,RyR存在3个亚型,每个亚型都是由4个单体组成的四聚体,后者构成Ca2+释放通道.RyR的结构中有调控因子的结合位点,一些内源性调控因子可影响RyR的构型和Ca2+释放.结合作者的研究,就RyR的结构功能、RyR2的一些重要内源性调控因子及其调控机制做一简要综述.  相似文献   

4.
细胞内钙库排空产生一种信号,诱导细胞膜上的钙库操纵的钙通道(SOC)开放,使Ca^2 由细胞外进入细胞内,称为容量性钙内流(CCE),或钙释放激活的钙通道(CRAC),可能由果蝇一过性受体电位(trp)和trp样(trpl)基因编码,钙库排空和通道开放之间的偶联机制不清,目前主要提出三种机制:(1)弥散信使;(2)蛋白质-蛋白质之间的相互作用;(3)囊泡分泌。本文综述了CCE的分子代表 ,可能机制及电生理表型。  相似文献   

5.
Ryanodine受体和内源性调节蛋白的相互作用   总被引:6,自引:0,他引:6  
Ryanodine受体(RyR)是细胞内分子量最大的离子通道,在调节各种细胞内钙信号转导方面扮演着重要的角色。在骨骼肌中,RyR和双氢吡啶受体共同参与肌细胞的兴奋-收缩偶联。同时,一些内源性蛋白(包括FK结合蛋白、钙调素、钙结合蛋白、junctin和triadin等)通过不同的方式,在不同的阶段与RyR结合,形成一个复杂的调控网络,协助RyR发挥正常生理功能,实现结构与功能的统一。  相似文献   

6.
钙离子(Ca2+)是重要的第二信使,通过与效应蛋白的结合和解离,以及在不同细胞器之间的穿梭运动而精确调控细胞活动,参与多种重要生命过程。细胞内具有精确调节Ca2+时空分布的调控系统。在静息状态下,细胞内的游离Ca2+浓度约为100 nmol/L;而当细胞受到信号刺激后,胞内的Ca2+浓度可上升至1000 nmol/L甚至更高。细胞中存在多种跨膜运送Ca2+的膜蛋白,以精确调节Ca2+浓度的时空动态变化,其中,细胞质膜上的多种Ca2+通道(包括电压门控通道、受体门控通道、储存控制通道等),以及内质网/肌质网和线粒体等胞内"钙库"膜上的雷诺丁受体、三磷酸肌醇受体等膜蛋白复合物,均可提升胞内Ca2+浓度,而细胞质膜上的钠钙交换体、质膜Ca2+-ATP酶、"钙库"膜上的内质网Ca2+-ATP酶、线粒体Ca2+单向转运体等,可将Ca2+浓度降低至静息态水平。质膜钙ATP酶是向细胞外运送Ca2+的关键膜蛋白,本文将对其结构、功能及其酶活性的调控机制做一简要综述。  相似文献   

7.
Ryanodine受体(ryanodine receptor,Ry R)是位于细胞内内质网/肌浆网膜上的钙离子释放通道蛋白。Ry R是由四个足状结构的亚单位组成的同源四聚体,每个亚单位大于550 k Da,四聚体的总分子量超过2 MDa,是迄今发现的内质网/肌浆网膜上最大的离子通道。哺乳动物有三种类型的Ry R,其中Ry R1主要分布在骨骼肌中,Ry R2首先发现于心肌,Ry R3主要在脑中有较多分布。Ry R钙离子释放通道在肌肉收缩、突触传递、激素分泌、蛋白折叠和程控性凋亡以及坏死等一系列以细胞功能为基础的生理过程中起着极其重要的作用,因而近些年在医学生物学和药学应用上都有极大的进展。该文就Ry R在机体中的分布、功能结构和调节因子等进行了介绍,其蛋白调节因子二氢吡啶受体(dihydropyridine receptor,DHPR)、钙调蛋白(Calmodulin)、隐钙素(calsequestrin)、FKBP(FK506-binding protein)家族蛋白和小分子调节因子咖啡因、离子等都是Ry R复合体行使细胞生理功能必不可少的因素。  相似文献   

8.
肌质网(sarcoplasmic reticulum,SR)中的钙释放通道利阿诺定受体(ryanodine receptor,RyR)是调控胞浆钙离子浓度的重要蛋白,其活性受多种调控剂影响.调控剂的不同电子传递性质可能作用于RyR的功能性巯基,进而影响其门控状态.了解具有不同电子传递性质的调控剂影响钙通道的作用机制具有重要意义.本研究采用光子相关光谱法(PCS)、CPM(7-二乙 基-3-(4′-马来酰亚胺苯基)4-甲基香豆素)荧光标记法及[3H]-ryanodine结合等实验,分别检测多种调控剂对RyR1的蛋白及复合体粒度分布、自由巯基量及对通道状态的影响,利用光漂白法检测各调控剂的电子传递性质.结果显示,激活剂和巯基氧化剂具有类似电子受体的性质并产生相似作用,即自由蛋白粒度增加,自由巯基量减少,具有激活通道作用;抑制剂和巯基还原剂则具有类似电子供体的性质,作用效果相反.  相似文献   

9.
环化二磷酸腺苷核糖(cyclic ADP-ribose,cADPR)是烟酰胺腺嘌呤二核苷酸(NAD+)的代谢产物,是新近发现的一种细胞内第二信使.在许多哺乳类和无脊椎动物细胞中,cADPR能引起胞内钙库释放钙离子,其可能机制是:cADPR受体结合cADPR,通过Ryanodine受体或类Ryanodine受体介导的钙通道使cADPR敏感的钙库释放钙离子,此外,一条由一氧化氮(NO)、环化鸟苷酸(cGMP)和cADPR组成的细胞内信号转导途径可能存在于许多细胞中.  相似文献   

10.
库操纵的钙(Store Operated Calcium,SOC)进入参与许多重要Ca2+信号生理过程,如细胞分化和凋亡虽然SOC的许多生物物理特性被表述,但研究最清楚的是钙释放激活的钙(Ca2+ release-activated Ca2+,CRAC)通道.最近通过RNA干扰技术在果蝇和哺乳动物细胞上鉴定出CRAC通道的两个组成蛋白STIM1和Orail细胞静息时,STIM1均匀分布在内质网膜(ER)上.一当钙库耗竭,ER上STIM1会聚集迁移到细胞膜下,相比而言,Orail是一个形成CRAC通道孔的四次跨膜蛋白.有报道说STIM1作为ER上一个Ca2+感受器向细胞膜传导钙库耗竭信号.虽然钙库耗竭激活CRAC通道的过程在最近的研究中被定量描述为四个步骤,但还有很多细节仍然不清楚.如STIM1是如何感受钙库耗竭而导致其发生聚集的不清楚,又如STIM1是如何定位到细胞膜下又如何传导信息的不清楚,STIM1和Orai1直接到底是如何相互作用的等都有待进一步的研究.本文对CRAC通道的研究历史和最新进展进行了讨论.  相似文献   

11.
Structural characterization of the RyR1-FKBP12 interaction   总被引:1,自引:0,他引:1  
The 12 kDa FK506-binding protein (FKBP12) constitutively binds to the calcium release channel RyR1. Removal of FKBP12 using FK506 or rapamycin causes an increased open probability and an increase in the frequency of sub-conductance states in RyR1. Using cryo-electron microscopy and single-particle image processing, we have determined the 3D difference map of FKBP12 associated with RyR1 at 16 A resolution that can be fitted with the atomic model of FKBP12 in a unique orientation. This has allowed us to better define the surfaces of close apposition between FKBP12 and RyR1. Our results shed light on the role of several FKBP12 residues that had been found critical for the specificity of the RyR1-FKBP12 interaction. As predicted from previous immunoprecipitation studies, our results suggest that Gln3 participates directly in this interaction. The orientation of RyR1-bound FKBP12, with part of its FK506 binding site facing towards RyR1, allows us to propose how FK506 is involved in the dissociation of FKBP12 from RyR1.  相似文献   

12.
In smooth muscle, the ryanodine receptor (RyR) mediates Ca(2+) release from the sarcoplasmic reticulum (SR) Ca(2+) store. Release may be regulated by the RyR accessory FK506-binding protein (FKBP12) either directly, as a result of FKBP12 binding to RyR, or indirectly via modulation of the activity of the phosphatase calcineurin or kinase mTOR. Here we report that RyR-mediated Ca(2+) release is modulated by FKBP12 in colonic but not aortic myocytes. Neither calcineurin nor mTOR are required for FKBP12 modulation of Ca(2+) release in colonic myocytes to occur. In colonic myocytes, co-immunoprecipitation techniques established that FKBP12 and calcineurin each associated with the RyR2 receptor isoform (the main isoform in this tissue). Single colonic myocytes were voltage clamped in the whole cell configuration and cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) increases evoked by the RyR activator caffeine. Under these conditions FK506, which displaces FKBP12 (to inhibit calcineurin) and rapamycin, which displaces FKBP12 (to inhibit mTOR), each increased the [Ca(2+)](c) rise evoked by caffeine. Notwithstanding, neither mTOR nor calcineurin are required to potentiate caffeine-evoked Ca(2+) increases evoked by each drug. Thus, the mTOR and phosphatidylinositol 3-kinase inhibitor, LY294002, which directly inhibits mTOR without removing FKBP12 from RyR, did not alter caffeine-evoked [Ca(2+)](c) transients. Nor did inhibition of calcineurin by cypermethrin, okadaic acid or calcineurin inhibitory peptide block the FK506-induced increase in RyR-mediated Ca(2+) release. In aorta, although RyR3 (the main isoform), FKBP12 and calcineurin were each present, RyR-mediated Ca(2+) release was unaffected by either FK506, rapamycin or the calcineurin inhibitors cypermethrin and okadaic acid in single voltage clamped aortic myocytes. Presumably failure of FKBP12 to associate with RyR3 resulted in the immunosuppressant drugs (FK506 and rapamycin) being unable to alter the activity of RyR. The effects of these drugs are therefore, apparently dependent on an association of FKBP12 with RyR. Together, removal of FKBP12 from RyR augmented Ca(2+) release via the channel in colonic myocytes. Neither calcineurin nor mTOR are required for the FK506- or rapamycin-induced potentiation of RyR Ca(2+) release to occur. The results indicate that FKBP12 directly inhibits RyR channel activity in colonic myocytes but not in aorta.  相似文献   

13.
Chloride fluxes through the calcium-gated chloride channel Anoctamin-1 (TMEM16A) control blood pressure, secretion of saliva, mucin, insulin, and melatonin, gastrointestinal motility, sperm capacitation and motility, and pain sensation. Calcium activates a myriad of regulatory proteins but how these proteins affect TMEM16A activity is unresolved. Here we show by co-immunoprecipitation that increasing intracellular calcium with ionomycin or by activating sphingosine-1-phosphate receptors, induces coupling of calcium/calmodulin-dependent phosphatase calcineurin and prolyl isomerase FK506-binding protein 12 (FKBP12) to TMEM16A in HEK-293 cells. Application of drugs that target either calcineurin (cyclosporine A) or FKBP12 (tacrolimus known as FK506 and sirolimus known as rapamycin) caused a decrease in TMEM16A activity. In addition, FK506 and BAPTA-AM prevented co-immunoprecipitation between FKBP12 and TMEM16A. FK506 rendered the channel insensitive to cyclosporine A without altering its apparent calcium sensitivity whereas zero intracellular calcium blocked the effect of FK506. Rapamycin decreased TMEM16A activity in cells pre-treated with cyclosporine A or FK506. These results suggest the formation of a TMEM16A-FKBP12-calcineurin complex that regulates channel function. We conclude that upon a cytosolic calcium increase the TMEM16A-FKPB12-calcineurin trimers are assembled. Such hetero-oligomerization enhances TMEM16A channel activity but is not mandatory for activation by calcium.  相似文献   

14.
Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.  相似文献   

15.
Mechanism of osteogenic induction by FK506 via BMP/Smad pathways   总被引:1,自引:0,他引:1  
FK506 is an immunosuppressant that exerts effects by binding to FK506-binding protein 12 (FKBP12). Recently, FK506 has also been reported to promote osteogenic differentiation when administered locally or in vitro in combination with bone morphogenetic proteins (BMPs), although the underlying mechanism remains unclarified. The present study initially showed that FK506 alone at a higher concentration (1muM) induced osteogenic differentiation of mesenchymal cell lines, which was suppressed by adenoviral introduction of Smad6. FK506 rapidly activates the BMP-dependent Smads in the absence of BMPs, and the activation was blocked by Smad6. Overexpression of FKBP12, which was reported to block the ligand-independent activation of BMP type I receptor A (BMPRIA), suppressed Smad signaling induced by FK506, but not that induced by BMP2. BMPRIA and FKBP12 bound to each other, and this binding was suppressed by FK506. These data suggest that FK506 promotes osteogenic differentiation by activating BMP receptors through interacting with FKBP12.  相似文献   

16.
The calcium release channel (CRC)/ryanodine receptor (RyRec) has been identified as the foot structure of the sarcoplasmic reticulum (SR) and provides the pathway for calcium efflux required for excitation-contraction coupling in skeletal muscle. The CRC has previously been reported to consist of four identical 565-kDa protomers. We now report the identification of a 12-kDa protein which is tightly associated with highly purified RyRec from rabbit skeletal muscle SR. N-terminal amino acid sequencing and cDNA cloning demonstrates that the 12-kDa protein from fast twitch skeletal muscle is the binding protein for the immunosuppressant drug FK506. In humans, FK506 binds to the 12-kDa FK506-binding protein (FKBP12) and blocks calcium-dependent T cell activation. We find that FKBP12 and the RyRec are tightly associated in skeletal muscle SR on the basis of: 1) co-purification through sequential heparin-agarose, hydroxylapatite, and size exclusion chromatography columns; 2) coimmunoprecipitation of the RyRec and FKBP12 with anti-FKBP12 antibodies; and 3) subcellular localization of both proteins to the terminal cisternae of the SR, and not in the longitudinal tubules of SR, in fast twitch skeletal muscle. The molar ratio of FKBP12 to RyRec in highly purified RyRec preparations is approximately 1:4, indicating that one FKBP12 molecule is associated with each calcium release channel/foot structure.  相似文献   

17.
FKBP12, an FK506 binding protein, interacts with type 1 ryanodine receptor (RyR1) and modulates its calcium channel activity. However, there are many opposing reports of FKBP12's interaction with other related calcium channels, such as type 1 IP(3) receptor and type 3 ryanodine receptor (IP(3)R1 and RyR3). In addition, the involvement of the prolyl-dipeptide motif in the calcium channels and the corresponding binding residues in FKBP12 remain controversial. Through pulldown assays with recombinant proteins, we provide biochemical evidence of the interaction between FKBP12 and RyR1, RyR3 and IP(3)R1. Using NMR chemical shift mapping, we show that the important binding residues in FKBP12 are located in its hydrophobic FK506 binding region. Consistently, we demonstrate that FK506 can competitively inhibit the interaction between FKBP12 and the dipeptide motifs of the calcium channels. We believe our results shed lights on the binding mechanism of calcium channel-FKBP12 interaction.  相似文献   

18.
FK506-binding proteins (FKBP) belong to the immunophilin family and are best known for their ability to enable the immunosuppressive properties of FK506 and rapamycin. For rapamycin, this is achieved by inducing inhibitory ternary complexes with the kinase mTOR. The essential accessory protein for this gain-of-function was thought to be FKBP12. We recently showed that this view might be too restricted, since larger FK506-binding proteins can functionally substitute for FKBP12 in mammalian cells. Recent studies have also shown that FK506-binding proteins can modulate Akt-mTOR signaling in the absence of rapamycin. Here we discuss the role of FK506-binding proteins for the mechanism of rapamycin as well as their intrinsic actions on the Akt/mTOR pathway.  相似文献   

19.
We present a study of FKBP12/FK506 using an electron structure calculation. These calculations employ a novel technique called eCADD on the protein’s full electron structure along with its hydrophobic pocket and the frontier-orbital-perturbation theory. We first obtain the energy bands and orbital coefficients of protein FKBP12. On this basis, we found that the activity atoms and activity residues of FKBP12 were in good agreement with X-ray crystallography experiments. The results indicate that the interactions occur only between the LUMOs of FKBP12 and the HOMO of FK506, not between the HOMOs of FKBP12 and the LUMO of FK506. In other words, the activity sites of protein FKBP12 are located on its LUMOs, not HOMOs. The electron structures of FKBP12/FK506 give us a clearer understanding of their interaction mechanism and will help us design new ligands of FKBP12.  相似文献   

20.
The emergence of drug‐resistant malaria parasites is the major threat to effective malaria control, prompting a search for novel compounds with mechanisms of action that are different from the traditionally used drugs. The immunosuppressive drug FK506 shows an antimalarial activity. The mechanism of the drug action involves the molecular interaction with the parasite target proteins PfFKBP35 and PvFKBP35, which are novel FK506 binding protein family (FKBP) members from Plasmodium falciparum and Plasmodium vivax, respectively. Currently, molecular mechanisms of the FKBP family proteins in the parasites still remain elusive. To understand their functions, here we have determined the structures of the FK506 binding domain of Plasmodium vivax (PvFKBD) in unliganded form by NMR spectroscopy and in complex with FK506 by X‐ray crystallography. We found out that PvFKBP35 exhibits a canonical FKBD fold and shares kinetic profiles similar to those of PfFKBP35, the homologous protein in P. falciparum, indicating that the parasite FKBP family members play similar biological roles in their life cycles. Despite the similarity, differences were observed in the ligand binding modes between PvFKBD and HsFKBP12, a human FKBP homolog, which could provide insightful information into designing selective antimalarial drug against the parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号