共查询到20条相似文献,搜索用时 0 毫秒
1.
Ponissery Saidu S Dibattista M Matthews HR Reisert J 《Journal of visualized experiments : JoVE》2012,(62):e3862
Animals sample the odorous environment around them through the chemosensory systems located in the nasal cavity. Chemosensory signals affect complex behaviors such as food choice, predator, conspecific and mate recognition and other socially relevant cues. Olfactory receptor neurons (ORNs) are located in the dorsal part of the nasal cavity embedded in the olfactory epithelium. These bipolar neurons send an axon to the olfactory bulb (see Fig. 1, Reisert & Zhao, originally published in the Journal of General Physiology) and extend a single dendrite to the epithelial border from where cilia radiate into the mucus that covers the olfactory epithelium. The cilia contain the signal transduction machinery that ultimately leads to excitatory current influx through the ciliary transduction channels, a cyclic nucleotide-gated (CNG) channel and a Ca(2+)-activated Cl(-) channel (Fig. 1). The ensuing depolarization triggers action potential generation at the cell body. In this video we describe the use of the "suction pipette technique" to record odorant-induced responses from ORNs. This method was originally developed to record from rod photoreceptors and a variant of this method can be found at jove.com modified to record from mouse cone photoreceptors. The suction pipette technique was later adapted to also record from ORNs. Briefly, following dissociation of the olfactory epithelium and cell isolation, the entire cell body of an ORN is sucked into the tip of a recording pipette. The dendrite and the cilia remain exposed to the bath solution and thus accessible to solution changes to enable e.g. odorant or pharmacological blocker application. In this configuration, no access to the intracellular environment is gained (no whole-cell voltage clamp) and the intracellular voltage remains free to vary. This allows the simultaneous recording of the slow receptor current that originates at the cilia and fast action potentials fired by the cell body. The difference in kinetics between these two signals allows them to be separated using different filter settings. This technique can be used on any wild type or knockout mouse or to record selectively from ORNs that also express GFP to label specific subsets of ORNs, e.g. expressing a given odorant receptor or ion channel. 相似文献
2.
Odorant-induced currents in intact patches from rat olfactory receptor neurons: theory and experiment. 总被引:1,自引:0,他引:1 下载免费PDF全文
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of approximately 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV. Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of approximately 115 pS and depolarization of approximately 32 mV. All these results are consistent with cAMP-gated cation channels dominating the odorant response. This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells. 相似文献
3.
Freshly dissociated olfactory receptor cells (ORCs) are commonly used in electrophysiological research investigations of the physicochemical mechanisms of olfactory signal transduction. Because the morphology of cultured cells clearly becomes worse over time, the ORCs are examined traditionally within several days after dissociation. However, there has been a major concern that cells are affected soon after dissociation. To gain a better understanding of the reliability of data obtained from solitary cells, we obtained electrical data during the lifetime of single ORCs dissociated from the newt. The time course for the deterioration could be revealed by monitoring the membrane properties during culture. Although the number of living cells that were identified by trypan blue extrusion declined day by day, the remaining cells retained morphology and their fundamental electrical features until day 19. In some cells, the cilia and dendrite were observed until day 21, and the bipolar morphology until day 31. The fundamental features of cell excitation were maintained during culture without showing remarkable changes when they retained morphological features. The results suggest that electrical properties of cells are almost unchanged within several days. Furthermore, the dissociated newt ORCs can be used for several weeks that are almost comparable to the intrinsic lifetime of the ORCs in vivo. 相似文献
4.
Excitation, inhibition, and suppression by odors in isolated toad and rat olfactory receptor neurons 总被引:4,自引:0,他引:4
Sanhueza M Schmachtenberg O Bacigalupo J 《American journal of physiology. Cell physiology》2000,279(1):C31-C39
Vertebrate olfactoryreceptor neurons (ORNs) exhibit odor-induced increases in actionpotential firing rate due to an excitatory cAMP-dependent current. Fishand amphibian ORNs also give inhibitory odor responses, manifested asdecreases in firing rate, but the underlying mechanism is poorlyunderstood. In the toad, an odor-induced Ca2+-activatedK+ current is responsible for the hyperpolarizing receptorpotential that causes inhibition. In isolated ORNs, a third manner bywhich odors affect firing is suppression, a direct and nonspecificreduction of voltage-gated and transduction conductances. Here we showthat in whole cell voltage-clamped toad ORNs, excitatory or inhibitory currents were not strictly associated to a particular odorant mixture.Occasionally, both odor effects, in addition to suppression, wereconcurrently observed in a cell. We report that rat ORNs also exhibitodor-induced inhibitory currents, due to the activation of aK+ conductance closely resembling that in the toad,suggesting that this conductance is widely distributed amongvertebrates. We propose that ORNs operate as complex integrator unitsin the olfactory epithelium, where the first events in the process ofodor discrimination take place. 相似文献
5.
Odour transduction in olfactory receptor neurons 总被引:2,自引:0,他引:2
The molecular mechanisms that control the binding of odorant to olfactory receptors and transduce this signal into membrane depolarization are reviewed. They are compared in vertebrates and insects for interspecific (allelochemicals) and intraspecific (pheromones) olfactory signals. Attempts to develop quantitative models of these multistage signalling networks are presented. Computational analysis of olfactory transduction is still in its infancy and appears as a promising area for future developments. 相似文献
6.
Summary The fine structure of the cytolemma of olfactory receptor cells in the newt was studied by the freeze-fracture replica method. Two kinds of receptor cells were recognized, namely ciliated cells (ciliary type) and non-ciliated cells (microvilli type). The cytolemma of olfactory knobs as well as their processes from both types of receptor cells showed an abundance of large membrane particles 80110Å in diameter. The large square aggregation of membrane particles, 0.1×0.1 m to 0.2×0.3 m in size, consisting of 50100 cuboidal subunits, were found in the cytolemma of the dendrite. A structural model of aggregation is presented. The soma of the receptor cell revealed large pitted membrane particles about 140Å in diameter. These particles are possibly the morphologic counterpart to ionophores which have been proposed by electrophysiological studies. 相似文献
7.
Odor-evoked inhibition in primary olfactory receptor neurons 总被引:3,自引:1,他引:3
Odors can inhibit as well as excite lobster olfactory receptorcells. Inhibitory components of an odor mixture act within thenormal, first 500 ms odor sampling interval of the animal toreduce the peak magnitude and increase the latency of the netexcitatory receptor potential in a concentration-dependent manner.The intracellular effects are reflected in the propagated outputof the cell. The results argue that inhibitory odor input isfunctional in olfaction by potentially serving to increase thediversity of the neuronal patterns that are thought to be thebasis of odor discrimination. 相似文献
8.
Isolated squid olfactory receptor neurons respond to dopamine and betaine with hyperpolarizing conductances. We used Ca(2+) imaging techniques to determine if changes in intracellular Ca(2+) were involved in transducing the hyperpolarizing odor responses. We found that dopamine activated release of Ca(2+) from intracellular stores while betaine did not change internal Ca(2+) concentrations. Application of 10 mM caffeine also released Ca(2+) from intracellular stores, suggesting the presence of ryanodine-like receptors. Depletion of intracellular stores with 100 microM thapsigargin revealed the presence of a Ca(2+) store depletion-activated Ca(2+) influx. The influx of Ca(2+) through the store-operated channel was reversibly blocked by 10 mM Cd(2+). Taken together, these data suggest a novel odor transduction system in squid olfactory receptor neurons involving Ca(2+) release from intracellular stores. Copyright Copyright 1999 S. Karger AG, Basel 相似文献
9.
Rapid recovery from K current inactivation on membrane hyperpolarization in molluscan neurons 总被引:3,自引:1,他引:2 下载免费PDF全文
Recovery from K current inactivation was studied in molluscan neurons using two-microelectrode and internal perfusion voltage clamps. Experiments were designed to study the voltage-dependent delayed outward current (IK) without contamination from other K currents. The amount of recovery from inactivation and the rate of recovery increase dramatically when the membrane potential is made more negative. The time course of recovery at the resting potential, -40 mV, is well fit by a single exponential with a time constant of 24.5 s (n = 7). At more negative voltages, the time course is best fit by the sum of two exponentials with time constants at -90 mV of 1.7 and 9.8 s (n = 7). In unclamped cells, a short hyperpolarization can cause rapid recovery from inactivation that results in a shortening of the action potential duration. We conclude that there are two inactivated states of the channel and that the time constants for recovery from both states are voltage dependent. The results are discussed in terms of the multistate model for K channel gating that was developed by R. N. Aldrich (1981, Biophys. J., 36:519-532). 相似文献
10.
Applying GABA (1 microM-1 mM) to the soma of cultured lobster olfactory receptor neurons evokes an inward current (V(m) = -60 mV) accompanied by an increase in membrane conductance, with a half-effect of 487 microM GABA. The current-voltage relationship of this current is linear between -100 and 100 mV and reverses polarity at the equilibrium potential for Cl(-). The current is blocked by picrotoxin and bicuculline methiodide, and is evoked by trans-aminocrotonic acid, isoguvacine, muscimol, imidazole-4-acetic acid, and 3-amino-1-propanesulfonic acid, but not by the GABA(C)-receptor agonist cis-4-aminocrotonic acid and the GABA(B)-receptor agonist 3-aminopropylphosphonic. Applying GABA to the soma of the cells in situ reversibly suppresses the spontaneous discharge and substantially decreases the odor-evoked discharge. The effects of GABA on the cell soma in situ are antagonized by both picrotoxin and bicuculline methiodide. Taken together with evidence that GABA directly activates a chloride channel in outside-out patches excised from the soma of these neurons, we conclude that lobster olfactory receptor neurons express an ionotropic GABA receptor that can potentially regulate the output of these cells. Copyright Copyright 1999 S. Karger AG, Basel 相似文献
11.
Modulation by PKA of the hyperpolarization-activated current (Ih) in cultured rat olfactory receptor neurons 总被引:2,自引:0,他引:2
The hyperpolarization-activated Ih channel is modulated by neurotransmitters acting through the cAMP messenger system. In rat olfactory receptor neurons (ORNs), dopamine, by inhibition of adenylyl cyclase, shifts the voltage of half-maximal activation (V1/2) of Ih to more negative potentials and decreases Ih maximal relative conductance. Whether these effects result from a phosphorylation-dependent mechanism is unclear. Therefore, we used whole-cell patch-clamp recording techniques to study cAMP-dependent phosphorylation via PKA on Ih in rat ORNs. General protein kinase inhibition (50 nM K252a) produced a hyperpolarizing shift in Ih V1/2 and decreased Ih maximal conductance. Specific inhibition of PKA with H-89 (500 nM) also shifted the V1/2 of Ih to more negative potentials, and, in some cells, decreased Ih maximal conductance. PKA-mediated phosphorylation (cBIMPS, 50 mM) shifted Ih V1/2 more positive, modulated the kinetics of Ih channel activation and increased Ih peak current amplitude. Internal perfusion of the catalytic subunit of PKA (84 nM) also shifted Ih V1/2 positive and this shift was blocked by co-perfusion with PKI (50 nM). These results show that in rat ORNs, the voltage dependence of Ih activation can be modulated by PKA-dependent phosphorylation. We also show that PKA and other protein kinases may be involved in the regulation of Ih maximal conductance. Our findings suggest that changes in the phosphorylation state of ORNs may affect resting properties as well as modulate odor sensitivity. 相似文献
12.
Inwardly rectifying currents in enzymically dissociated olfactory receptor neurons of rat were studied by using patch-clamp techniques. Upon hyperpolarization to membrane potentials more negative than -100 mV, small inward-current relaxations were observed. Activation was described by a single exponential with a time constant that decreased e-fold for a 21 mV hyperpolarization. The current was not reduced by the external application of 5 mM Ba2+, but was abolished by the addition of 5 mM Cs+ to the bath solution. Increasing the external K+ concentration ([K+]o) to 25 mM dramatically enhanced the current without affecting the voltage range or the kinetics of activation. In 25 mM [K+]o, tail currents reversed at -26 mV, significantly more positive than the K+ equilibrium potential of -44 mV. These characteristics are consistent with those of a mixed Na+/K+ inward rectification that has been reported in several types of neuronal, cardiac and smooth muscle cells. The current may contribute to controlling cell excitability during the response to some odorants. 相似文献
13.
Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 s of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction. 相似文献
14.
Richard C. Bruch Jiesheng Kang Michael L. Moore Kathryn F. Medler 《Developmental neurobiology》1997,33(4):387-394
Recent biochemical evidence indicates that protein kinase C (PKC) and G-protein-coupled receptor kinases (GRKs) are involved in olfactory signal termination and desensitization. The polymerase chain reaction (PCR) was used to investigate the expression of PKC and GRK genes in olfactory tissue and in isolated olfactory receptor neurons from channel catfish (Ictalurus punctatus). Sequence analysis of cloned PKC PCR products showed that the α, β, δ, ϵ, and τ isotypes were expressed in olfactory tissue. Sequence analysis of PCR products obtained from isolated olfactory receptor neurons showed that PKCβ and PKCδ were expressed in the receptor cells. A 600-bp GRK PCR product was obtained from isolated olfactory neurons that shared 86% and 92% amino acid sequence identity to the mammalian β-adrenergic receptor kinase gene products βARK1 and βARK2, respectively. Go6976, a specific inhibitor of calcium-regulated PKC activity, completely inhibited odorant-stimulated PKC activity in isolated olfactory cilia. This result suggested that odorant-stimulated PKC activity is mediated by the calcium-sensitive PKCβ isotype. Taken together, these results are consistent with the conclusion that PKCβ and βARK mediate odorant receptor phosphorylation and olfactory signal termination. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 387–394, 1997 相似文献
15.
Vitaly Vodyanoy 《Biometals》2010,23(6):1097-1103
Zinc metal nanoparticles strongly enhance odorant responses of olfactory receptor neurons. Olfactory receptors belong to the
large superfamily of G-protein coupled receptors. A theoretical model based on experimental results explains a stoichiometry
of metal nanoparticles receptor interaction. The model is similar to that used by A.V. Hill for the binding reaction between
hemoglobin and oxygen. The model predicted that one metal nanoparticle binds two receptor molecules to create a dimer. This
result is consistent with the evidence that many G-protein-coupled receptors form dimers or larger oligomers. 相似文献
16.
Reisert J 《The Journal of general physiology》2010,136(5):529-540
Mammalian odorant receptors form a large, diverse group of G protein-coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain. 相似文献
17.
Odorant stimulation of olfactory receptor neurons (ORNs) leads to the activation of a Ca2+ permeable cyclic nucleotide-gated (CNG) channel followed by opening of an excitatory Ca2+-activated Cl− channel, which carries about 70% of the odorant-induced receptor current. This requires ORNs to have a [Cl−]i above the electrochemical equilibrium to render this anionic current excitatory. In mammalian ORNs, the Na+-K+-2Cl− co-transporter 1 (NKCC1) has been characterized as the principal mechanism by which these neurons actively accumulate Cl−. To determine if NKCC activity is needed in amphibian olfactory transduction, and to characterize its cellular location,
we used the suction pipette technique to record from Rana pipiens ORNs. Application of bumetanide, an NKCC blocker, produced a 50% decrease of the odorant-induced current. Similar effects
were observed when [Cl−]i was decreased by bathing ORNs in low Cl− solution. Both manipulations reduced only the Cl− component of the current. Application of bumetanide only to the ORN cell body and not to the cilia decreased the current
by again about 50%. The results show that NKCC is required for amphibian olfactory transduction, and suggest that the co-transporter
is located basolaterally at the cell body although its presence at the cilia could not be discarded. 相似文献
18.
Evelien Micholt Danny Jans Geert Callewaert Carmen Bartic Jeroen Lammertyn Bart Nicolai 《In vitro cellular & developmental biology. Animal》2012,48(10):650-659
Embryonic cells are very robust in surviving dissection and culturing protocols and easily adapt to their in vitro environment. Despite these advantages, research in the olfactory field on cultured embryonic olfactory neurons is sparse. In this study, two primary rat olfactory explant cultures of different embryonic d (E17 and E20) were established, comprising epithelium and bulb. The functionality of these neurons was tested by measuring intracellular calcium responses to cAMP-inducing agents forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) with fluorescence microscopy. For E17, the responsive cell fraction increased over time, from an initial 3% at the 1 d in vitro (DIV) to a maximum of 19% at 11 DIV. The response of E20 neurons fluctuated over time around a more or less stable 13%. A logistic regression analysis indicated a significant difference between both embryonic d in the response to FSK + IBMX. In addition, of these functional neurons, 23.3% of E17 and 54.3% of E20 cultures were responsive to the odorant isoamyl acetate. 相似文献
19.
Dantrolene suppresses the hyperpolarization or outward current observed during anoxia in hippocampal neurons 总被引:2,自引:0,他引:2
Hyperpolarizations, or outward currents, recorded in CA1 pyramidal cells during brief anoxia (2-3 min) (but not postanoxic hyperpolarizations) are markedly reduced (92 +/- 4.8%) by dantrolene sodium, applied by superfusion (10-20 microM). This effect, which is at least partly reversible by prolonged washing, is in keeping with the idea that anoxia activates a Ca2(+)-sensitive K conductance by releasing Ca2+ from internal stores. 相似文献
20.
Lobster olfactory receptor neurons, like those of many animals, use two modes of olfactory signaling, excitation and inhibition to code olfactory information. Inhibition appears to act through two distinct ionic mechanisms. Here we show that neither ionic mechanism is odor-specific, providing further support for the emerging understanding that there are no inhibitory odorants per se, but rather that the action of a particular odorant is inherent in the olfactory receptor cell on which an odorant acts. 相似文献