首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for short‐range sex pheromone communication by the egg parasitoid wasp Trissolcus brochymenae (Hymenoptera: Platygastridae) was investigated in closed arena bioassays. Males of this parasitoid showed more antennal drumming and more frequent mounting behaviour on 1‐ to 2‐d‐old virgin females compared with 8‐d‐old virgin females. Male copulation attempts were fewer with previously mated females than with virgin females. Males courted and made copulation attempts with 1‐ to 2‐d‐old female cadavers, but not with male cadavers or with female cadavers rinsed in organic solvents of different polarities. Male attraction to female cadavers was re‐established by treating cadavers with acetone extracts of females, but not with ether or hexane extracts. In experiments using female cadavers dissected into head, mesosoma, and gaster, and then reassembled using one unwashed body section and two body sections washed in acetone, males were attracted only to the reassembled cadavers with an unwashed mesosoma. These findings suggest that (1) courtship behaviour in males of T. brochymenae is triggered by a short‐range sex pheromone produced by females; (2) the age and the physiological condition of females (virgin/mated) influence pheromone release or production; (3) the female's mesosoma is the source of the sex pheromone; and (4) polar components of the sex pheromone play a major role in influencing male behaviour. Our results suggest that quasi‐gregarious egg parasitoids are selected for short‐range rather than long‐range sex pheromones.  相似文献   

2.
Abstract Male Neoclytus acuminatus acuminatus (F.) (Coleoptera: Cerambycidae) attempt to mate with females only after touching them with their antennae, suggesting that mate recognition is mediated by contact pheromones in the cuticular wax layer of females. Consistent with that hypothesis, males exhibit similar responses to dead females in laboratory bioassays, but not to solvent‐washed dead females with their cuticular hydrocarbons removed. The mating response of males is restored when solvent extracts are reapplied to carcasses of solvent‐washed females, indicating that the contact pheromone is present in solvent extracts. Solvent extracts of the female cuticle contain six methylalkanes that are not present in extracts of males, three of which (7Me‐C25, 7Me‐C27 and 9Me‐C27) constitute almost 40% of the total hydrocarbons. The bioactivity of these three compounds is tested by applying synthetic standards to solvent‐washed carcasses of females and presenting them to males. Standards are tested singly, pairwise and as the complete blend; freeze‐killed females serve as controls. Males attempt to couple with solvent‐washed female carcasses treated with 7Me‐C27 alone and in combination with 9Me‐C27 but only the complete blend elicits the same number of mounting and coupling attempts as does the control. These findings suggest that 7Me‐C27 (7‐methylheptacosane) is the major component of the contact sex pheromone of N. a. acuminatus and that 7Me‐C25 and 9Me‐C27 act as synergists.  相似文献   

3.
Males and females of the common bed bug, Cimex lectularius L. (Heteroptera: Cimicidae), have been shown to produce and respond to an aggregation pheromone. We tested whether juvenile C. lectularius also produce and respond to aggregation pheromone, and whether the pheromone is perceived by contact chemoreception. In dual‐choice laboratory experiments, juveniles, but not males or females, preferred juvenile‐exposed paper discs to control discs. Unlike juveniles, males and females preferred male‐exposed paper discs to control discs. Neither juveniles, males, nor females preferred female‐exposed discs to control discs. When test stimuli were inaccessible, C. lectularius failed to show any preference. Male‐ and juvenile‐specific contact pheromones may have contrasting functions of marking shelters as safe refugia for development and growth (juveniles) or mate encounter (adults), but result in the same phenomenon, the aggregation of conspecifics.  相似文献   

4.
Queen pheromones are among the most important chemical messages regulating insect societies yet they remain largely undiscovered, hindering research into interesting proximate and ultimate questions. Identifying queen pheromones in multiple species would give new insight into the selective pressures and evolutionary constraints acting on these ubiquitous signals. Here, we present experimental and comparative evidence that 3‐methylalkanes, hydrocarbons present on the queen's cuticle, are a queen pheromone throughout the ant genus Lasius. Interspecific variation in the chemical profile is consistent with 3‐methylalkanes evolving more slowly than other types of hydrocarbons, perhaps due to differential selection or evolutionary constraints. We argue that the sensory ecology of the worker response imposes strong stabilizing selection on queen pheromones relative to other hydrocarbons. 3‐Methylalkanes are also strongly physiologically and genetically coupled with fecundity in at least one Lasius species, which may translate into evolutionary constraints. Our results highlight how honest signalling could minimize evolutionary conflict over reproduction, promoting the evolution and maintenance of eusociality.  相似文献   

5.
Finding mates is frequently problematic for parasitoid wasps. In some parasitoid species, males rely on volatile, airborne sex pheromones for locating mates, while in others they rely on contact, trail sex pheromones. This study sought to shed light on the mate finding mechanism of males of Aphytis melinus. Specifically, the goal was to determine whether A. melinus males use airborne or contact pheromones, or both, for locating mates. The study showed that A. melinus males rely on a contact, trail sex pheromone for locating mates: A. melinus males responded to substrate-borne cues left by virgin females, while they did not respond to airborne cues from virgin females. Specifically, males more frequently encountered virgin females when the females walked across an arena to a fixed encounter point compared to when they were manually placed at the encounter point, and spent greater than expected time on surfaces previously visited by virgin females compared to control surfaces not visited by females. In contrast, males did not respond to airborne cues from virgin females in an airflow olfactometer nor to traps baited with virgin females in the field, and spent similar lengths of time on surfaces visited by newly-mated or 24-h mated females versus control surfaces not visited by females. The main effect of the trail sex pheromone on the behavior of A. melinus males was to direct their search and, so, increase the likelihood of encountering mates. This effect apparently is not preceded by longer-range attraction of males via an airborne female sex pheromone. Overall, the results of this study support a hypothesis in which A. melinus males searching on substrates on which females may be present rely exclusively on a trail sex pheromone to locate mates.  相似文献   

6.
Mori K 《Chirality》2011,23(6):449-462
Mori's synthetic works on bioactive natural products in general and pheromones in particular started about 40 years ago to establish their absolute configurations and also to clarify their stereochemistry-bioactivity relationships. Results indicate that bioactive natural products are not always enantiomerically pure, and the stereochemistry-bioactivity relationships are not simple but complicated. For example, neither (R)- nor (S)-sulcatol, the aggregation pheromone of an ambrosia beetle, is behaviorally bioactive, whereas their mixture is active. In the case of olean, the sex pheromone of the olive fruit fly, its (R)-isomer is active against the males and the (S)-isomer is active against the females. Recent synthesis of two new insect pheromones is discussed to illustrate the modern methods in enantioselective synthesis.  相似文献   

7.
In the context of an evolutionary study of the chemical communication in termites, sex pheromones and trail‐following pheromones were investigated in two Termopsidae, Zootermopsis nevadensis and Z. angusticollis. In these species, in which the presence of sex‐specific pheromones has been demonstrated previously, the chemical structure of the female sex pheromone has now been identified as (5E)‐2,6,10‐trimethylundeca‐5,9‐dienal and the male sex pheromone as (+)‐ or (?)‐syn‐4,6‐dimethyldodecanal. The amount of sex pheromone was estimated at 5–10 ng per individual in females and 2–5 ng in males. Because these two sympatric species do not differ in their pheromonal chemical composition, reproductive isolation is probably mediated chiefly by differences in dispersal flight chronology. The trail‐following pheromone was shown to be composed of the same compound as the male sex pheromone, that is syn‐4,6‐dimethyldodecanal. The compound syn‐4,6‐dimethyldodecanal was 10 times more active than the racemic (+/?)‐syn + (+/?)‐anti‐4,6‐dimethyldodecanal in eliciting trail‐following. The amount of syn‐4,6‐dimethyldodecanal was estimated at 0.1–0.5 ng per pseudergate. Regarding the phylogenetic aspects, the nature of the female sex pheromone of Zootermopsis is structurally akin to the trail‐following pheromone of Mastotermes darwiniensis of Mastotermitidae and Porotermes adamsoni and Stolotermes victoriensis of Termopsidae. Interestingly, the nature of the trail‐following pheromone of the Termopsinae Zootermopsis is clearly different from that of the Porotermitinae P. adamsoni and the Stolotermitinae S. victoriensis, which mirrors recent molecular data on the paraphyly of Termopsidae. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 519–530.  相似文献   

8.
Adults of Tribolium confusum secrete two pheromones. The first, produced by the male, is attractive to both sexes and the second, produced by the female, is attractive to the male only. Pheromone production and perception was studied in relation to habituation, beetle age, time of day and previous mating. A living source of each pheromone habituates the responding beetles, the male pheromone habituating more strongly; female pheromone habituates only in the absence of the male pheromone. Habituation to one pheromone was always accompanied by an enhanced response to the other.Five days after emergence, production of male pheromone reaches a peak that is maintained. Production of female pheromone peaks after 3 days. Both sexes are responsive to male pheromone immediately upon eclosion, males reaching maximum response at 14 days, females at 8 days. Males are also responsive to female pheromone upon eclosion reaching maximum response at 8 days; female response to female pheromone is imperceptible. Males but not females display a 24 hr rhythm in pheromone production. Mated beetles did not differ significantly from unmated beetles in their ability to perceive pheromones. Alteration in male pheromone production after mating was detected by females but not males; this pheromone may, therefore, act as both a sex and aggregation pheromone.  相似文献   

9.
Male American cockroaches (Periplaneta americana) are attracted to virgin females by volatile sex pheromones. After antennal contact with the female they turn through 180° and spread their wings in courtship display. A chemical contact stimulus releasing male courtship is demonstrated in the female cuticle. Experiments with standardized olfactory stimulation by volatile sex pheromones revealed that the contact stimulus is sex-specific and species-specific. It can be washed off the cuticle with non-polar solvents and was successfully transferred to glass dummies. However, it is not effective in the absence of volatile sex pheromones. Thus volatile sex pheromones are responsible for male attraction and sexual motivation, while mate recognition is accomplished through the contact pheromone.  相似文献   

10.
In several insect species, male mating success is higher in older than in younger males, although condition diminishes dramatically with age. Two hypotheses are under debate to explain the counterintuitive pattern of old male mating advantage: first, an increased eagerness of older males to mate, driven by their low residual reproductive value, and second female preference for older males based on chemical cues such as sex pheromones (female choice hypothesis). In a series of experiments, we manipulated female olfaction, male pheromone blend and female age to test whether old male mating advantage prevails when the influence of male sex pheromones is controlled for, using the tropical butterfly Bicyclus anynana as model. We found that older males had a higher mating success than younger ones irrespective of female scent‐sensitivity and irrespective of male pheromone blend. Interestingly, older males were found to court more often and for longer time bouts than younger males. These results were independent of female age, although younger males courted younger females more often and for longer bouts than older females. Taken together, our results indicate that male courtship activity (1) is higher in older compared to younger males and (2) increases the mating success of older males. Olfaction and sensing pheromones, in contrast, were not a necessary prerequisite for old male mating advantage to occur and may use other cues than pheromones to assess male quality.  相似文献   

11.
蛾类昆虫雄性信息素及其功能   总被引:2,自引:0,他引:2  
昆虫性信息素是两性通讯系统的基础,其中雄性信息素的研究相对较少。本文综述了蛾类昆虫雄性信息素的研究进展。迄今已鉴定出40余种蛾类昆虫的雄性信息素,其行为学功能主要有对雌性的引诱和激欲、对同种雄性的抑制及种间隔离等。  相似文献   

12.
Abstract Beet armyworm (BAW), Spodoptera exigua, is becoming one of more and more serious pests in China in recent years. As a part of research program of sex pheromone and its application of BAW in China, the hourly and daily variation of calling behavior and pheromone production of BAW females were investigated. Both calling behavior and titers of 4 sex pheromone components showed distinct diel rhythms, and the two peak periods were synchronous. In comparison, the calling activity lasted shorter period of time with a longer peak time, whereas the production of the sex pheromone lasted throughout the whole scotophase and part of the photophase with a very short peak time. The calling behavior began at the middle scotophase, reached the maximum at the middle‐later scotophase, and continued the maximal calling activity until the end of the scotophase. When the light was on, the calling percentage reduced sharply, and all females stopped calling 1 hour later. The variation patterns of the 4 pheromone components in the glands of the 3 day old moths were similar from one to another. From 0.5 h before to 4.5 h into scotophase, the titers increased slightly, but at 6.5 h they showed a significant increase up to the peak values of the scotophase. Soon at 8.5 h into the scotophase, they decreased significantly and thereafter gradually to undetectable level at 4.5 h into the next photophase. The daily change experiment showed that BAW females began calling at 0 scotophase, became fully active in calling at 3rd scotophase, and maintained the calling activity to 7th scotophase. There was no significant difference in pheromone titers among different day‐old moths.  相似文献   

13.
蛾类性信息素研究进展   总被引:14,自引:0,他引:14  
韦卫  赵莉蔺  孙江华 《昆虫学报》2006,49(5):850-858
蛾类是昆虫性信息素中研究较多的类群,已有565种的性信息素成份被鉴定,其相关研究在害虫监测和防治上得到实际应用的同时,已涉及到生态、生化、遗传等诸多方面,特别是在物种多样性的化学表达及物种的生殖隔离现象的分子水平的表达上,提供了研究的典范。本文将介绍蛾类性信息素的多样性、性信息素化学结构鉴定、微量成分的作用、合成性信息素的利用、性信息素生物合成酶、性信息素生产的调节机制及性信息素的感受机制等方面的研究现状和存在的问题。  相似文献   

14.
In insects, mating often occurs after natal dispersal, and hence relies on a coevolved combination of sexual communication and movement allowing mate encounter. Volatile sex pheromones are widespread, generally emitted by females and triggering in‐flight orientation of conspecific males. In parasitoid wasps, unmated females can start laying unfertilized eggs via parthenogenesis so that host patches could serve as sites of rendezvous for mating. Males could therefore use cues associated with host patches to focus their search on females that have successfully found oviposition sites. We hypothesized that in parasitoids exploiting herbivorous hosts, sex pheromones, and herbivore‐induced plant volatiles (HIPV) should act in synergy, triggering male orientation toward ovipositing females. We tested this hypothesis with the aphid parasitoid Lysiphlebus testaceipes. Results from both field and laboratory experiments show that males are strongly attracted to virgin females, but that volatiles from aphid‐infested plants have no effect on male orientation, neither has a cue, nor in interaction with the female sex pheromone. The absence of synergy between sex pheromones and HIPV contrasts with results on other species and raises interesting questions on mating systems and sexual selection in parasitoid wasps.  相似文献   

15.
After mating, females may experience a decline in sexual receptivity and attractiveness that may be associated with changes in the production and emission of sex pheromones. In some cases, these changes are produced by chemical substances or structures (e.g., mating plugs) produced by males as a strategy to avoid or reduce sperm competition. In scorpions, sex pheromones may be involved in finding potential mates and starting courtship. Here, we tested the hypothesis that the males of Urophonius brachycentrus, a species that produces a mating plug, use chemical communication (sex pheromones) to detect, localize, and discriminate females according to their mating status (virgin or inseminated), aided by chemical signaling. We also explored the effect of extracting of the mating plug on chemical communication and mating acceptance. We used Y‐maze olfactometers with different stimuli to analyze male choice and exploration time. To evaluate mating acceptance, we measured the attractiveness and receptivity of females of different mating status. We found that chemical communication occurs through volatile pheromones, but not contact pheromones. Males equally preferred sites with virgin or inseminated females with removed mating plug. In turn, females with these mating statuses were more attractive and receptive for males than inseminated females. This study suggests that the mating plug significantly affects female chemical attractiveness with an effect on volatile pheromones and decreasing sexual mating acceptance of females. The decline in the female's sexual receptivity is a complex process that may respond to several non‐exclusive mechanisms imposed by males and strategically modulated by females.  相似文献   

16.
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNASeq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression.  相似文献   

17.
Spider sex pheromones: emission, reception, structures, and functions   总被引:1,自引:0,他引:1  
Spiders and their mating systems are useful study subjects with which to investigate questions of widespread interest about sexual selection, pre- and post-copulatory mate choice, sperm competition, mating strategies, and sexual conflict. Conclusions drawn from such studies are broadly applicable to a range of taxa, but rely on accurate understanding of spider sexual interactions. Extensive behavioural experimentation demonstrates the presence of sex pheromones in many spider species, and recent major advances in the identification of spider sex pheromones merit review. Synthesised here are the emission, transmission, structures, and functions of spider sex pheromones, with emphasis on the crucial and dynamic role of sex pheromones in female and male mating strategies generally. Techniques for behavioural, chemical and electrophysiological study are summarised, and I aim to provide guidelines for incorporating sex pheromones into future studies of spider mating. In the spiders, pheromones are generally emitted by females and received by males, but this pattern is not universal. Female spiders emit cuticular and/or silk-based sex pheromones, which can be airborne or received via contact with chemoreceptors on male pedipalps. Airborne pheromones primarily attract males or elicit male searching behaviour. Contact pheromones stimulate male courtship behaviour and provide specific information about the emitter's identity. Male spiders are generally choosy and are often most attracted to adult virgin females and juvenile females prior to their final moult. This suggests the first male to mate with a female has significant advantages, perhaps due to sperm priority patterns, or mated female disinterest. Both sexes may attempt to control female pheromone emission, and thus dictate the frequency and timing of female mating, reflecting the potentially different costs of female signalling and/or polyandry to both sexes. Spider sex pheromones are likely to be lipids or lipid soluble, may be closely related to primary metabolites, and are not necessarily species specific, although they can still assist with species recognition. Newer electrophysiological techniques coupled with chemical analyses assist with the identification of sex pheromone compounds. This provides opportunities for more targeted behavioural experimentation, perhaps with synthetic pheromones, and for theorising about the biosynthesis and evolution of chemical signals generally. Given the intriguing biology of spiders, and the critical role of chemical signals for spiders and many other animal taxa, a deeper understanding of spider sex pheromones should prove productive.  相似文献   

18.
Pheromones play pivotal roles in the reproductive behavior of moths, most prominently for the mate finding of male moths. Accordingly, the molecular basis for the detection of female‐released pheromones by male moths has been studied in great detail. In contrast, little is known about how females can detect pheromone components released by themselves or by conspecifics. In this study, we assessed the antenna of female Heliothis virescens for elements of pheromone detection. In accordance with previous findings that female antennae respond to the sex pheromone component (Z)‐9‐tetradecenal, we identified olfactory sensory neurons that express its cognate receptor, the receptor type HR6. All HR6 cells coexpressed the “sensory neuron membrane protein 1” (SNMP1) and were associated with supporting cells expressing the pheromone‐binding proteins PBP1 and PBP2. These features are reminiscent to male antennae and point to congruent mechanisms for pheromone detection in the two sexes. Further analysis of the SNMP1‐expressing cells revealed a higher number in females compared to males. Moreover, in females, the SNMP1 neurons were arranged in clusters, which project their dendrites into a common sensillum, whereas in males there were only solitary SNMP1‐neurons and only 1 per sensillum. Not all SNMP1 positive cells in female antennae expressed HR6 but instead the putative pheromone receptors HR11 and HR18, respectively. Neurons expressing 1 of the 3 receptor types were assigned to different sensilla. Together the data indicate that on the antenna of females, sensory neurons in a subset of sensilla trichodea are equipped with molecular elements, which render them responsive to pheromones.  相似文献   

19.
When female blow flies Lucilia sericata and Phormia regina (Diptera: Calliphoridae) oviposit in aggregations on carrion, even‐aged larval offspring reportedly develop faster, and fewer are parasitized or preyed upon. The benefits of aggregated oviposition equally affect con‐ and heterospecific larvae sharing a resource. The benefits imply that female blow flies engage in coordinated, pheromone‐mediated oviposition behavior. Yet, repeated attempts to identify oviposition pheromones have failed invoking doubt that they exist. Simply by regurgitating and feeding on carrion, flies may produce attractive semiochemicals. If flies were to aggregate in response to feeding flies rather than ovipositing flies, then the semiochemical cue(s) may be associated with the salivary gland. Working with L. sericata and P. regina and using liver as a surrogate oviposition medium, we test the hypotheses, and present data in their support, that (i) gravid or nongravid females ovipositing and/or feeding on liver enhance its attractiveness to gravid and nongravid females; (ii) females respond to semiochemicals from feeding heterospecific females; (iii) females respond equally well to semiochemicals from feeding con‐ and heterospecific females; (iv) macerated head tissues of females applied to liver enhance its attractiveness; and (v) females in direct contact with and feeding on liver, but not when next to yet physically separated from liver, enhance attraction of flies. We conclude that oviposition site‐seeking females do not respond to an oviposition pheromone. Instead, they appear to coopt semiochemicals associated with feeding flies as resource indicators, taking chances that resources are suitable for oviposition, and that ovipositing flies are present.  相似文献   

20.
Abstract. Field observations were made on the responses of males and gynoparae of three host-alternating aphid species, the blackberry-cereal aphid, Sitobion fragariae (Walker), the bird cherry-oat aphid, Rhopalosiphum padi (L.) and the damson-hop aphid, Phorodon humuli (Schrank) to species-specific sex pheromones released from transparent and coloured water traps.Pheromone traps caught significantly more males than did control traps without pheromone, whereas transparent, light green, yellow and orange traps caught most insects.Measurements of the distance over which sex pheromones function indicated that male P.humuli detect the pheromone 2–6 m from the source and can fly upwind to a source in wind speeds of 0.7 m s-1.In all three species significantly more gynoparae were caught in pheromone traps than in control traps, suggesting that pheromone released by adult sexual females may assist late-flying gynoparae to locate a suitable host plant on which to deposit their progeny.The response is relatively stronger for males than gynoparae, but the pheromones appear to act as both sex and aggregation pheromones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号