共查询到20条相似文献,搜索用时 0 毫秒
1.
Lu He Xinke Zhou Chen Qu Lijuan Hu Yunqiang Tang Qiong Zhang Min Liang Jian Hong 《Journal of cellular and molecular medicine》2014,18(1):49-58
The high incidence of recurrence and the poor prognosis of hepatocellular carcinoma (HCC) necessitate the discovery of new predictive markers of HCC invasion and prognosis. In this study, we evaluated the expression pattern of two members of a novel oncogene family, Musashi1 (MSI1) and Musashi2 (MSI2) in 40 normal hepatic tissue specimens, 149 HCC specimens and their adjacent non‐tumourous tissues. We observed that MSI1 and MSI2 were significantly up‐regulated in HCC tissues. High expression levels of MSI1 and MSI2 were detectable in 37.6% (56/149) and 49.0% (73/149) of the HCC specimens, respectively, but were rarely detected in adjacent non‐tumourous tissues and were never detected in normal hepatic tissue specimens. Nevertheless, only high expression of MSI2 correlated with poor prognosis. In addition, MSI2 up‐regulation correlated with clinicopathological parameters representative of highly invasive HCC. Further study indicated that MSI2 might enhance invasion of HCC by inducing epithelial–mesenchymal transition (EMT). Knockdown of MSI2 significantly decreased the invasion of HCC cells and changed the expression pattern of EMT markers. Moreover, immunohistochemistry assays of 149 HCC tissue specimens further confirmed this correlation. Taken together, the results of our study demonstrated that MSI2 correlates with EMT and has the potential to be a new predictive biomarker of HCC prognosis and invasion to help guide diagnosis and treatment of post‐operative HCC patients. 相似文献
2.
William K. K. Wu Liang Zhao Jing Tang Ge Wen Xuegang Sun Yawei Liu 《Cell biochemistry and function》2013,31(4):319-324
This study investigates whether the anti‐metastasis effect of microRNA‐139 (miR‐139) on hepatocellular carcinoma (HCC) is mediated through regulating c‐fos expression. The expression levels of miR‐139 and c‐fos in human HCC cell sublines with high (MHCC97H) and low (MHCC97L) spontaneous metastatic potentials were quantified using QPCR or Western blot. miR‐139 mimics was transfected into MHCC97H cells to overexpress miR‐139, and miR‐139 inhibitor was transfected into MHCC97L cells to down‐express miR‐139. The effect of overexpression or down‐expression of miR‐139 on c‐fos expression of MHCC97H and MHCC97L cells was evaluated using QPCR and Western blot. The 3′ untranslated region segments of FOS containing the miR‐139 binding sites were amplified by PCR, and the luciferase activity in the transfected cells was assayed. In comparison with the expression level of miR‐139 in MHCC97L cells, the expression level in MHCC97H cells was significantly decreased, whereas c‐Fos was significantly up‐regulated in MHCC97H. The overexpression of miR‐139 significantly inhibited the expression of c‐fos in MHCC97H cells, and the down‐expression of miR‐139 significantly promoted the expression of c‐fos in MHCC97L cells. miR‐139 suppressed the luciferase activity of the pGL‐FOS by approximately 40% compared with the negative control. In vitro cell migration analysis demonstrated that depletion of c‐fos or overexpression of miR‐139 in MHCC97H cells reduced cell migration, whereas overexpression of c‐fos or depletion of miR‐139 in MHCC97L cells increased cell migration. Thus, we got the conclusion that miR‐139 expression is down‐regulated in human HCC cell sublines with high spontaneous metastatic potentials (MHCC97H). Derepression of c‐Fos caused by miR‐139 down‐regulation contributes to the metastasis of HCC. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
Yuchuan Jiang Peng Chen Kaishun Hu Guanqi Dai Jinying Li Dandan Zheng Hui Yuan Lu He Penghui Xie Mengxian Tu Shuang Peng Chen Qu Wenyu Lin Raymond T. Chung Jian Hong 《Journal of cellular and molecular medicine》2021,25(3):1568-1582
The pro-inflammatory and pro-fibrotic liver microenvironment facilitates hepatocarcinogenesis. However, the effects and mechanisms by which the hepatic fibroinflammatory microenvironment modulates intrahepatic hepatocellular carcinoma (HCC) progression and its response to systematic therapy remain largely unexplored. We established a syngeneic orthotopic HCC mouse model with a series of persistent liver injury induced by CCl4 gavage, which mimic the dynamic effect of hepatic pathology microenvironment on intrahepatic HCC growth and metastasis. Non-invasive bioluminescence imaging was applied to follow tumour progression over time. The effect of the liver microenvironment modulated by hepatic injury on sorafenib resistance was investigated in vivo and in vitro. We found that the persistent liver injury facilitated HCC growth and metastasis, which was positively correlated with the degree of liver inflammation rather than the extent of liver fibrosis. The inflammatory cytokines in liver tissue were clearly increased after liver injury. The two indicated cytokines, tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6), both promoted intrahepatic HCC progression via STAT3 activation. In addition, the hepatic inflammatory microenvironment contributed to sorafenib resistance through the anti-apoptotic protein mediated by STAT3, and STAT3 inhibitor S3I-201 significantly improved sorafenib efficacy impaired by liver inflammation. Clinically, the increased inflammation of liver tissues was accompanied with the up-regulated STAT3 activation in HCC. Above all, we concluded that the hepatic inflammatory microenvironment promotes intrahepatic HCC growth, metastasis and sorafenib resistance through activation of STAT3. 相似文献
4.
5.
6.
Autophagy is thought to contribute to the pathogenesis of many diseases, including cancer. Long non-coding RNA (lncRNA) CCAT2 functions as an oncogene in a variety of tumours. However, it is still unknown whether CCAT2 is involved in autophagy and metastasis of hepatocellular carcinoma (HCC). In our study, we found that lncRNA CCAT2 expression was significantly increased in HCC tissue and was correlated with advanced stage and venous invasion. Further experiments revealed that CCAT2 induced autophagy and promoted migration and invasion in vitro and in vivo. Mechanistic investigations found that CCAT2 involved in HCC by regulating miR-4496/Atg5 in cytoplasm. In nucleus, CCAT2 bound with ELAVL1/HuR to facilitate HCC progression. Our findings suggest that CCAT2 is an oncogenic factor in the progression of HCC with different regulatory mechanisms and may serve as a target for HCC therapy. 相似文献
7.
Xudong Zhang Xiaoliang Xu Zechuan Zhang Cailin Xue Zhijun Kong Siyuan Wu Xiao Yun Yue Fu Chunfu Zhu Xihu Qin 《International journal of biological sciences》2021,17(3):768
Long noncoding RNAs (LncRNAs) are emerging as crucial regulators in the pathophysiological process of various tumors, including HCC. Here, we identify a novel lncRNA Linc-KILH (KRT19 interacting long noncoding RNA in hepatocellular carcinoma), which is significantly up-regulated in HCC tissues and positively correlated with larger tumor size, severer microvascular invasion, more intrahepatic metastasis and decreased survival of HCC patients. Silence of Linc-KILH remarkably inhibited the proliferation and metastasis abilities of KRT19-positive HCC cells in vitro and in vivo. Mechanistically, Linc-KILH interacts with KRT19 and then inhibits the phosphorylation of KRT19 on Ser35, thereby, enhancing the translocation of KRT19 from cytoplasm to membrane in KRT19 positive HCC cells. Additionally, we validated that KRT19 interacts with β-catenin but not RAC1 in HCC cells. Linc-KILH enhanced the interaction between β-catenin and KRT19 in cytoplasm and promoted the nuclear translocation of β-catenin in HCC cells. Furthermore, Linc-KILH could enhance the promoting function of KRT19 on Notch1 signaling with the existence of KRT19 in HCC cells. Collectively, we revealed that Linc-KILH exerts a vital function in KRT19 positive HCC progression and may likely be developed into an effective therapeutic target for HCC. 相似文献
8.
Le Ren Deming Bao Liming Wang Qin Xu Yayun Xu Zhenwang Shi 《Journal of cellular and molecular medicine》2022,26(19):4986
Nesfatin‐1, a newly discovered adipokine derived from nucleobindin‐2 (NUCB2), has been described as a new prognostic marker in cancers. This study aimed to explore the functional role of NUCB2/nesfatin‐1 in the cell proliferation, migration and invasion in gastric carcinoma (GC). The expressions of NUCB2/nesfatin‐1 in GC tissues and normal adjacent tissues (NATs) were compared, and the effect of inhibition of NUCB2/nesfatin‐1 on the cell proliferation, migration, invasion and epithelial‐mesenchymal transition (EMT) in GC cell line SGC‐7901 was investigated. Cell transfection was conducted to inhibit NUCB2/nesfatin‐1 by short hairpin RNA. Cell proliferation, migration and invasion abilities were determined using cell counting kit‐8 (CCK‐8), 5‐ethynyl‐2′‐deoxyuridine (EdU), wound healing and transwell assays, respectively. The expressions of EMT markers E‐Cadherin and N‐Cadherin were determined using western blotting. The expression of NUCB2/nesfatin‐1 protein in GC tissues was significantly increased compared with that in NATs. Consistently, the serum concentrations of NUCB2/nesfatin‐1 were significantly higher in patients with GC as compared with those in the control group. Moreover, the results of CCK‐8 assay and EdU assay indicated that knockdown of NUCB2/nesfatin‐1 could markedly decrease SGC‐7901 proliferation. Furthermore, the results of wound healing assay and transwell assay demonstrated that knockdown of NUCB2/nesfatin‐1 significantly suppressed SGC‐7901 migration and invasion abilities. Additionally, knockdown of NUCB2/nesfatin‐1 decreased the expressions of N‐Cadherin and increased the expressions of E‐Cadherin in SGC‐7901 cells. These findings suggest that knockdown of NUCB2/nesfatin‐1 suppressed the proliferation, migration, invasion and EMT of SGC‐7901 cells, suggesting a potentially promising therapeutic target for GC. 相似文献
9.
c‐Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton‐mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c‐Cbl in glioma invasion has never been investigated. We report here, for the first time, that c‐Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi‐mediated depletion of c‐Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild‐type, but not mutant c‐Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c‐Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c‐Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c‐Cbl promotes glioma invasion through up‐regulation of MMP2. J. Cell. Biochem. 111: 1169–1178, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
10.
11.
We recently report that the expression of polycomb chromobox 4(Cbx4)is significantly correlated with the overall survival of a great cohort of hepatocellular carcinoma(HCC)patients and it enhances hypoxia-induced vascular endothelial growth factor(VEGF)expression and angiogenesis in HCC cells through enhancing sumoylation of hypoxia inducible factor-1alpha(HIF-1α).Here we continue to investigate the potential effects of Cbx4 on the migration and metastasis of the metastatic HCC cell line MHCC97L.Our results show that Cbx4 overexpression in the cell line increases the in vitro vessel formation of vascular endothelial cells in its SUMO interaction motifs-dependent manner,and promotes the in vitro migration of the cancer cell,which can be effectively abrogated by anti-VEGF antibody.Although Cbx4 expression does not impact the in vitro growth of MHCC97L cells,it still promotes the progression and metastasis of orthotopically transplanted tumors in nude mice.These results further support the role of Cbx4 as a SUMO E3 ligase in the progression and metastasis of HCC. 相似文献
12.
13.
Agarwal D Goodison S Nicholson B Tarin D Urquidi V 《Differentiation; research in biological diversity》2003,71(2):114-125
The multi-step nature of metastasis poses difficulties in both design and interpretation of experiments to unveil the mechanisms causing the process. In order to facilitate such studies, we have previously derived a pair of breast tumor cell lines that originate from the same breast tumor but which have diametrically opposite metastatic capabilities. In this system, the monoclonal cell line M-4A4 is metastatic to the lungs of athymic mice, whereas clone NM-2C5 is equally tumorigenic but non-metastatic. Here, we report that representational difference analysis (RDA) of cDNA obtained from the two clonal populations revealed an increased expression of tyrosinase-related protein-1 (TYRP-1) and the matrix metalloproteinase-8 (MMP-8) genes in the non-metastatic cell line. RNA and protein analyses in cultured cells and in primary xenograft tissues confirmed that the non-metastatic cell line expresses TYRP-1 and MMP-8 at levels that are at least 20-fold higher than the metastatic counterpart. Other members of the MMP family (MMP-9 and MMP-2) and the tissue inhibitor of metalloproteinase-2 (TIMP-2) were found to be expressed at similar levels in both populations. The effects of MMP-8 and TYRP-1 on in vitro invasion and migration were assessed in cells whose expression of these genes was altered by stable transduction with sense and antisense constructs. Specific down-regulation of MMP-8 in non-metastatic NM-2C5 cells resulted in a 2.5-fold increased capacity to invade through Matrigel. Unlike other members of the matrix metalloproteinase family, MMP-8 has not previously been implicated in the processes of tumorigenesis or metastasis. The successful identification of two proteins that are differentially expressed in these matched clonal cell lines and the tumors that they produce demonstrates the feasibility of using this approach to search for genes that are associated with aberrant differentiation toward metastatic behavior. 相似文献
14.
Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling
下载免费PDF全文
![点击此处可从《Molecular systems biology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Rasmus Agren Adil Mardinoglu Anna Asplund Caroline Kampf Mathias Uhlen Jens Nielsen 《Molecular systems biology》2014,10(3)
Genome‐scale metabolic models (GEMs) have proven useful as scaffolds for the integration of omics data for understanding the genotype–phenotype relationship in a mechanistic manner. Here, we evaluated the presence/absence of proteins encoded by 15,841 genes in 27 hepatocellular carcinoma (HCC) patients using immunohistochemistry. We used this information to reconstruct personalized GEMs for six HCC patients based on the proteomics data, HMR 2.0, and a task‐driven model reconstruction algorithm (tINIT). The personalized GEMs were employed to identify anticancer drugs using the concept of antimetabolites; i.e., drugs that are structural analogs to metabolites. The toxicity of each antimetabolite was predicted by assessing the in silico functionality of 83 healthy cell type‐specific GEMs, which were also reconstructed with the tINIT algorithm. We predicted 101 antimetabolites that could be effective in preventing tumor growth in all HCC patients, and 46 antimetabolites which were specific to individual patients. Twenty‐two of the 101 predicted antimetabolites have already been used in different cancer treatment strategies, while the remaining antimetabolites represent new potential drugs. Finally, one of the identified targets was validated experimentally, and it was confirmed to attenuate growth of the HepG2 cell line. 相似文献
15.
Shijun Yu Jingde Chen Ming Quan Li Li Yandong Li Yong Gao 《Journal of cellular and molecular medicine》2021,25(2):1024-1034
Tetraspanin CD63 has been widely implicated in tumour progression of human malignancies. However, its role in the tumorigenesis and metastasis of hepatocellular carcinoma (HCC) remains unclear yet. In the present study, we aimed to investigate the specific function and underlying mechanisms of CD63 in HCC progression. CD63 expression in HCC tissues was detected using immunohistochemistry and quantitative real-time PCR analyses; effects of CD63 on HCC cell proliferation and migration were investigated by CCK-8 assay, colony formation assay, transwell assay and a xenograft model of nude mice. RNA-sequencing, bioinformatics analysis, dual-luciferase reporter assay and Western blot analysis were performed to explore the underlying molecular mechanisms. Results of our experiments showed that CD63 expression was frequently reduced in HCC tissues compared with adjacent normal tissues, and decreased CD63 expression was significantly associated with larger tumour size, distant site metastasis and higher tumour stages of HCC. Overexpression of CD63 inhibited HCC cell proliferation and migration, whereas knockdown of CD63 promoted these phenotypes. IL-6, IL-27 and STAT3 activity was regulated by CD63, and blockade of STAT3 activation impaired the promotive effects of CD63 knockdown on HCC cell growth and migration. Our findings identified a novel CD63-IL-6/IL-27-STAT3 axis in the development of HCC and provided a potential target for the diagnosis and treatment of this disease. 相似文献
16.
17.
18.
19.
20.
Lun He Kurt J. Isselbacher Jack R. Wands Howard M. Goodman Chiaho Shih Andrea Quaroni 《In vitro cellular & developmental biology. Plant》1984,20(6):493-504
Summary A human hepatocellular carcinoma cell line (FOCUS—Friendship of China and United States) was derived from a patient with primary
hepatocellular carcinoma. This cell line has been in continuous culture over an 18-mo period. The morphological and ultrastructural
features of FOCUS are consistent with its neoplastic hepatocellular orgin. FOCUS cells contain aspartate aminotransferase
and glucose-6-phosphatase activity. In addition, α1-antitrypsin, fibrinogen, alpha fetoprotein, and carcinoembryonic antigens were detectble in the cytoplasm of the cultured
cells by immunochemical staining techniques. The karyotype of the FOCUS cell is human in origin and it contains human DNA
sequences as detected by molecular hybridization analysis. The FOCUS cells do not show evidence of density-dependent inhibition
of growth under confluent conditions. Repeated growth curves over an 18-mo period were identical, revealing a doubling time
of 42 to 48 h. The malignant potential of FOCUS cells was further demonstrated by their ability to lead to gross tumor formation
after subcutaneous infection into nude mice. From one of the solid tumors grown in nude mice, recultured cell lines have been
established and found to have properties identical to the original FOCUS cell line. This FOCUS cell line represents an additional
model for further investigation of tumor specific antigens and the relationship between hepatitis B virus (HBV) and hepatocellular
carcinoma. Preliminary molecular characterization has indicated the existence of integrated HBV sequences within the FOCUS
genome. 相似文献