首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Numerous factors, including nest predation and brood parasitism, may limit populations of neotropical migratory birds. However, nest predation and brood parasitism are not constant, and temporal, biological, habitat, and landscape factors can affect the likelihood of these events. Understanding these patterns is important for species of conservation concern for which managers seek to provide quality habitat. One such species, the Swainson's warbler (Limnothlypis swainsonii), is a neotropical migrant that breeds primarily in bottomland hardwood forests of the southeastern United States. Little is known of factors influencing reproductive success of this rare, yet locally abundant, species. From 2004 through 2007, we examined factors influencing reproductive success of Swainson's warblers at 2 sites in eastern Arkansas, USA, St. Francis National Forest and White River National Wildlife Refuge. We used 2-stage modeling to assess the relationship between 1) temporal and biological, and 2) habitat and landscape factors and brood parasitism, nest survival, and fledgling production. Brood parasitism was greater in this population (36%) than reported elsewhere (≤ 10%), but decreased throughout the breeding season. Nest survival was comparable to or lower than in other populations of this species and increased throughout the breeding season. The probability of brood parasitism was greater near forest edges. Although nests of Swainson's warblers were often associated with giant cane (Arundinaria gigantea), nest survival had a weak negative association with cane density. For nests that were successful, the best predictor of number of Swainson's warblers fledged was brood-parasitism status: nonparasitized nests fledged 2.75 young, whereas parasitized nests fledged 0.60 Swainson's warblers. Our findings suggest that managing and restoring relatively high-elevation bottomland forests that are located far from agricultural edges should increase Swainson's warbler productivity.  相似文献   

2.
Cerulean Warblers (Setophaga cerulea) are a species with declining populations that exhibit regional variation in habitat selection and demographic rates. The Ozark region of the south‐central United States likely provides important habitat for Cerulean Warblers, but little is known about their breeding biology in that region. We studied Cerulean Warblers in riparian forests of the Ozarks of Arkansas from 2018 to 2020. We assessed multi‐scale habitat selection for vegetative and topographic features, documented their breeding biology, estimated within‐season and annual apparent survival, and estimated territory sizes. We found that Cerulean Warblers selected riparian habitat characterized by large‐diameter trees across all spatial scales. Contrary to the results of previous studies, males appeared to avoid white oaks (Quercus spp., Section Quercus) at the territory scale, but this avoidance may reflect an underlying preference for riparian habitat. Our logistic‐exposure estimate of nest survival (0.32; 85% confidence interval: 0.21–0.46) was similar to the median of estimates reported in previous studies. Our results indicate that maintaining riparian forests with large trees is important to provide suitable habitat for Cerulean Warblers in the Ozark region. Because of similarities in habitat selection among regions, some management practices from other populations, including retaining large trees and promoting a heterogeneous canopy structure, may be useful for managing for Cerulean Warblers in riparian areas of the Ozarks. However, selection for topography and tree species by Cerulean Warblers in our study also suggests that region‐specific management strategies will be beneficial. Finally, our demographic rate estimates for this population should prove valuable in future full‐annual‐cycle population modeling efforts.  相似文献   

3.
Constrained canonical correspondence analysis was used to compare the elevational distribution of conifer-broadleaved hardwood forests at nine localities on South Island, New Zealand. Elevations of individual species were compared using cover-weighted mean elevations and cover-weighted standard deviations of mean elevation. Mean elevations of floristically similar stands declined with latitude, but was also lower at a locality with a granite substrate than at an adjacent locality with a schist substrate. The mean elevation breadth of frequent species (those in >5% of stands) was greatest at a locality underlain by schist and least at a locality underlain by granite. This is consistent with wide habitat breadth for species in early successional stages, because forest underlain by schist is more frequently disturbed than forest underlain by granite. Elevation breadth of frequent species was less, and species' turnover greater, in South Island conifer-broadleaved hardwood forests than in conifer forests at similar latitudes in the Southern Rocky Mountains, USA.  相似文献   

4.
ABSTRACT Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with >50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., >40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed >40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future forest management practices.  相似文献   

5.
Sensitivity of bats to land use change depends on their foraging ecology, which varies among species based on ecomorphological traits. Additionally, because prey availability, vegetative clutter, and temperature change throughout the year, some species may display seasonal shifts in their nocturnal habitat use. In the Coastal Plain of South Carolina, USA, the northern long-eared bat (Myotis septentrionalis), southeastern myotis (Myotis austroriparius), tri-colored bat (Perimyotis subflavus), and northern yellow bat (Lasiurus intermedius) are species of conservation concern that are threatened by habitat loss. Our objective was to identify characteristics of habitat used by these species during their nightly active period and compare use between summer and winter. We conducted acoustic surveys at 125 sites during May–August and at 121 of the same 125 sites December–March 2018 and 2019 in upland forests, bottomland forests, fields, ponds, and salt marsh and used occupancy models to assess habitat use. The northern long-eared bat and southeastern myotis (i.e., myotis bats) used sites that were closer to hardwood stands, pine stands, and fresh water year-round. We did not identify any strong predictors of tri-colored bat habitat use in summer, but during winter they used bottomland forests, fields, and ponds more than salt marsh and upland forests. During summer and winter, northern yellow bats used sites close to fresh water and salt marsh. Additionally, during summer they used fields, ponds, and salt marsh more than upland and bottomland forests, but in winter they used bottomland forests, fields, and ponds more than upland forest and salt marsh. Our results highlight important land cover types for bats in this area (e.g., bottomland forests, ponds, and salt marsh), and that habitat use changes between seasons. Accounting for and understanding how habitat use changes throughout the year will inform managers about how critical habitat features may vary in their importance to bats throughout the year. © 2021 The Wildlife Society.  相似文献   

6.
Tropical forests harbor diverse ecological communities of plants and animals that are organized in complex interaction networks. The diversity and structure of plant–animal interaction networks may change along elevational gradients and in response to human‐induced habitat fragmentation. While previous studies have analyzed the effects of elevation and forest fragmentation on species interaction networks in isolation, to our knowledge no study has investigated whether the effects of forest fragmentation on species interactions may differ along elevational gradients. In this study, we analyzed main and interaction effects of elevation and forest fragmentation on plant–frugivore interaction networks at plant and bird species level. Over a period spanning two years, we recorded plant–frugivore interactions at three elevations (1000, 2000 and 3000 m a.s.l.) and in two habitat types (continuous and fragmented forest) in tropical montane forests in southern Ecuador. We found a consistent effect of elevation on the structure of plant–frugivore networks. We observed a decrease in the number of effective bird partners of plants and, thus, a decline in the redundancy of bird species with increasing elevation. Furthermore, bird specialization on specific plant partners increased towards high elevations. Fragmentation had a relatively weak effect on the interaction networks for both plant and bird species, but resulted in a significant increase in bird specialization in fragmented forests at high elevations. Our results indicate that forest fragmentation may have stronger effects on plant–frugivore interaction networks at high compared to low elevations because bird species richness declined more steeply towards high elevations than plant species richness. We conclude that conservation efforts should prioritize the maintenance of consumer diversity, for instance by maintaining stretches of continuous forest. This applies in particular to species‐poor communities, such as those at high elevations, as the ecological processes in these communities seem most sensitive towards forest fragmentation.  相似文献   

7.
Decomposition of red oak acorns (Quercus spp.; Section Erythrobalanus) could decrease forage biomass and gross energy (GE) available to wintering ducks from acorns. We estimated changes in mass and GE for 3 species of red oak acorns in flooded and non-flooded bottomland hardwood forests in Mississippi during winter 2009–2010. Mass loss of acorns was ≤8.1% and reduction in GE ≤0.03 kcal/g after exposure for 90 days. These small changes in mass and GE of red oak acorns would have minimal effect on carrying capacity of bottomland hardwood forests for ducks. © 2012 The Wildlife Society.  相似文献   

8.
Reforestation of bottomland hardwood (BLH) forests has occurred within the Lower Mississippi Alluvial Valley (LMAV), USA, to support a wide range of ecosystem services, but especially wildlife habitat enhancement. As ecosystem restoration efforts proceed in BLH ecosystems, managers and policymakers are seeking criteria to evaluate wildlife habitat enhancement goals. Specialist wildlife that evolved within forest ecosystems can be sensitive to the composition, structure, and function of an ecosystem in relation to the system's natural or historical range of variation and thereby serve as indicators of habitat quality. The swamp rabbit (Sylvilagus aquaticus) is a specialist species of BLH forests throughout the LMAV and therefore may be an appropriate indicator species for this ecosystem. To address this, we reviewed peer-reviewed literature to evaluate the utility of swamp rabbits as an indicator species according to three commonly-used criteria: habitat factors defining swamp rabbit relationships to BLH forests, the importance of swamp rabbit habitat to other wildlife, and the efficiency of swamp rabbit monitoring. We conclude that the swamp rabbit is a suitable indicator of wildlife habitat quality in BLH ecosystems in the LMAV because they evolved and remain endemic to the ecosystem, use habitat that integrates desirable characteristics that positively influence wildlife biodiversity, and are easy to monitor routinely.  相似文献   

9.
Kirtland's Warblers (Setophaga kirtlandii) are an endangered species with specialized habitat requirements, and the only documented nesting location in Canada is an Army installation. From 2007 to 2010, I compared habitat characteristics of sites occupied and not occupied by Kirtland's Warblers at Garrison Petawawa located ~200 km northwest of Ottawa, Ontario. Sites occupied by Kirtland's Warblers (N = 11) had greater percent cover of low sweet blueberry (Vaccinium angustifolium; 31.2%), coral lichen (Cladina stellaris; 0.4%), reindeer lichen (Cladonia rangiferina; 8.3%), and wavy‐leaved moss (Dicranum polysetum; 4.3%) than unoccupied sites (N = 6). I found no difference in tree species composition between sites, with jack pine (Pinus banksiana), white pine (Pinus strobus), red pine (Pinus resinosa), poplar (Populus tremuloides), and red maple (Acer rubra) present in both used and unused sites. Forest stands occupied by Kirtland's Warblers were significantly younger (< 20 yr old) than unoccupied sites, and most occupied sites were within former fire zones and sites where jack pines had been planted. Thus, breeding habitat of Kirtland's Warblers in Canada consisted of young pine trees, with more red pine than in their breeding habitat in Michigan, and ground cover including blueberry, lichens, and mosses. These results suggest that Kirtland's Warblers may be less selective in their habitat requirements than previously thought, and should provide guidance for recovery groups and regulatory agencies in accurately delineating suitable habitat for these warblers in Canada.  相似文献   

10.
Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base.  相似文献   

11.
Mature forests have structural habitat features that can take hundreds of years to develop, and large reserves alone are unlikely to ensure conservation of the species that rely on these features. This paper outlines a proposed new approach to managing mature forest features, the ‘mature habitat management approach’, in areas outside of reserves. The objective was to maintain a network of current and future mature forest habitat distributed across the landscape. The approach is designed to complement the existing reserve network and management actions and is tenure‐blind. Spatial information on the availability of mature forest habitat at the local (1‐km radius) and landscape (5‐km radius) scales is used for decisions on retention within a 1‐km radius of a harvest area, to reach the minimum target of 20% and 30% retention of mature forest at the local and landscape spatial scales, respectively. We believe this approach could contribute to meeting the conservation needs of many species that require mature forest features for refuge and breeding in Tasmania and elsewhere.  相似文献   

12.
Thick‐billed Parrots (Rhynchopsitta pachyrhyncha) and Maroon‐fronted Parrots (Rhynchopsitta terrisi) are the only parrots in Mexico found in high‐elevation coniferous forests. Both species are critically endangered due to logging, and climate change is expected to further reduce their available habitat. Our objectives were to assess the present and future availability of a suitable habitat for these parrots using ecological niche models. Future climatic scenarios were estimated by overlaying the present distributions of these parrots on maps of projected biome distributions generated using a North American vegetation model. Our climatic scenarios revealed that the distribution of key habitats for both parrots will likely be affected as the climate becomes more suitable for xeric biomes. The climate associated with coniferous forests in the current range of Maroon‐fronted Parrots is predicted to disappear by 2090, and the climate associated with the key coniferous habitats of Thick‐billed Parrots may contract. However, our results also indicate that suitable climatic conditions will prevail for the high‐elevation coniferous biomes where Thick‐billed Parrots nest. The degree to which both species of parrots will be able to adapt to the new scenarios is uncertain. Some of their life history traits may allow them to respond with a combination of adaptive and spatial responses to climatic change and, in addition, suitable climatic conditions will prevail in some portions of their ranges. Actions needed to ensure the conservation of these parrots include strict control of logging and integration of rapid response teams for fire management within the potential foraging ranges of nesting pairs. A landscape with a greater proportion of restored forests would also aid in the recovery of current populations of Thick‐billed and Maroon‐fronted parrots and facilitate their responses to climate change.  相似文献   

13.
Aim The Argentine Pampas was extensively and abruptly altered by European colonization. Between 1880 and 1885 the indigenous human inhabitants were completely displaced, and native grasslands were replaced by exotic pasture plants and crops. One of the most important ecological changes in the Pampas landscape, the introduction of tall exotic tree species, has received little attention, and its effect on wildlife has never been assessed. We have made an intensive survey of habitat use of Swainson's hawk, Buteo swainsoni in its most important non‐breeding quarters, the Pampas of Argentina, aiming to characterize the sites used by hawks for communal roosting. Location Pampas grasslands, Argentina. Methods We surveyed 30,000 km of roads by car during the austral summer from 2001 to 2004, covering the main non‐breeding area occupied by Swainson's hawks. Their roost sites were located by direct observation of birds roosting in tree stands close to the roads, by surveying potential roost sites around places where groups of pre‐ and post‐roosting hawks were recorded, and by gathering information from local farmers. Results Swainson's hawks exclusively used stands of exotic tree species for roosting. Eucalyptus viminalis was present in all 34 roosts surveyed, and in 59% of them it was the only species present. The remaining exotic tree species were the Siberian elm, Ulmus pumila, pines (Pinus spp.) and cypress (Cupressus spp.). Flock sizes at roost sites were unusually high for a raptor, with an average of 658 individuals (range 8–5000 hawks, n = 27 flocks). Main conclusions The introduction of exotic trees may have resulted in the expansion of the suitable habitat for Swainson's hawks, permitting a recent colonization of the Argentine Pampas. Tree stands may have also changed the communal roosting behaviour of this raptor, by virtue of their providing new structural elements in a region that almost completely lacked trees prior to European occupation.  相似文献   

14.
Abstract: Studies of space use and habitat selection of endangered species are useful for identifying factors that influence fitness of individuals and viability of populations. However, there is a lack of published information regarding these behaviors for the federally threatened Louisiana black bear (Ursus americanus luteolus). We documented space use and habitat selection for 28 female black bears in 2 subpopulations of the Tensas River Basin population in northeast Louisiana, USA. The Tensas subpopulation inhabits a relatively large (>300-km2) contiguous area of bottomland hardwood forest, whereas the Deltic subpopulation exists mainly in 2 small (<7-km2) forested patches surrounded by an agricultural matrix. Females on Deltic maintained smaller seasonal and annual home ranges than females on Tensas (all P < 0.04), except for females with cubs during spring. On Tensas, females with cubs maintained smaller home ranges than females without cubs during spring (P = 0.01), but we did not detect this difference on Deltic or in other seasons. Females on Tensas and Deltic exhibited differences in habitat selection when establishing home ranges and within home ranges (P < 0.001). Deltic females selected mature bottomland hardwood forests and avoided agricultural habitats at both spatial scales. Tensas females selected a mixture of swamps, mature and regenerating forests, and exhibited variation in selection across scale, season, and reproductive status. We suggest that differences in space use and habitat selection between Tensas and Deltic are at least partially due to habitat differences at the landscape (i.e., amount of forested habitat) and patch (i.e., food availability) scales. Our results contribute to the understanding of factors that influence space use and habitat selection by black bears and provide specific information on habitat types selected by Louisiana black bears to agencies involved in habitat protection and restoration for this threatened subspecies.  相似文献   

15.
Negative relationships between species richness and elevation are common and attributed to changes in single environmental properties associated to elevation, such as temperature and habitat area. However, research has lacked taxonomic breadth and comprehensive elevation studies that consider multiple groups from different trophic levels are rare. We thus analysed 24 groups of plants, arthropods, and microorganisms grouped into six trophic guilds (predators, detritivores, herbivores, plants, bacteria and fungi) along a relatively short elevational gradient (~600 m) in a subtropical forest in south‐east China. The total species richness of all organisms was not related to elevation, nor was the richness of plants, herbivores or microorganisms. However, species richness and abundance in two major trophic guilds of arthropods changed with elevation, which was mediated by changes in elevation‐associated habitat properties. Specifically, deadwood mass increased with elevation, which increased detritivore richness indirectly via detritivore abundance, thus supporting the ‘more individuals hypothesis’. In contrast, lower predator richness at higher elevations was directly related to lower mean temperatures, which had no effect on abundance. Our study demonstrates that even along relatively short gradients, elevation can have strong direct and abundance‐mediated effects on species richness, but with effects varying from positive to negative signs depending on local resource availability and the characteristics of groups or trophic guilds. If elevation positively influences local environmental properties that benefit a given group, richness can increase towards higher elevations. Thus, the effect of global change in mountainous regions should be evaluated within the local environmental context using multi‐taxon approaches.  相似文献   

16.
During recent years, predictive modelling techniques have been increasingly used to identify regional patterns of species spatial occurrence, to explore species–habitat relationships and to aid in biodiversity conservation. In the case of birds, predictive modelling has been mainly applied to the study of species with little variable interannual patterns of spatial occurrence (e.g. year‐round resident species or migratory species in their breeding grounds showing territorial behaviour). We used predictive models to analyse the factors that determine broad‐scale patterns of occurrence and abundance of wintering Swainson's hawks (Buteo swainsoni). This species has been the focus of field monitoring in its wintering ground in Argentina due to massive pesticide poisoning of thousands of individuals during the 1990s, but its unpredictable pattern of spatial distribution and the uncertainty about the current wintering area occupied by hawks led to discontinuing such field monitoring. Data on the presence and abundance of hawks were recorded in 30 × 30 km squares (n = 115) surveyed during three austral summers (2001–03). Sixteen land‐use/land‐cover, topography, and Normalized Difference Vegetation Index (NDVI) variables were used as predictors to build generalized additive models (GAMs). Both occurrence and abundance models showed a good predictive ability. Land use, altitude, and NDVI during spring previous to the arrival of hawks to wintering areas were good predictors of the distribution of Swainson's hawks in the Argentine pampas, but only land use and NDVI were entered into the model of abundance of the species in the region. The predictive cartography developed from the models allowed us to identify the current wintering area of Swainson's hawks in the Argentine pampas. The highest occurrence probability and relative abundances for the species were predicted for a broad area of south‐eastern pampas that has been overlooked so far and where neither field research nor conservation efforts aiming to prevent massive mortalities has been established.  相似文献   

17.
Question: Continua landscape approaches conceptualize the effects of habitat fragmentation on the biota by considering fragmented landscapes as continuous gradients, departing from the view of habitat as either suitable (fragment) or unsuitable (matrix). They also consider the ecological gradients or the ‘Umwelt’ (species‐specific perception of the landscape) to represent the processes that ultimately limit organisms' ability to colonize and persist within habitat remnants. Are these approaches suitable for evaluating the response of plant species to fragmentation? Location: Fragmented mid‐elevation temperate forests, Cantabrian range, Spain. Methods: The presence, abundance and demographic structure of populations of the perennial herb Primula vulgaris were sampled across a continuous extent of 100 ha, subdivided into 400 50 m × 50 m sampling units. These variables were related to forest availability, forest subdivision and edge density, topography and the spatial clumpiness of populations (a measure of plant dispersal constraints and, hence, a major surrogate of plant Umwelt). Results: Fragmentation processes, especially habitat loss, negatively affect P. vulgaris, with a stronger effect on presence than on abundance and demography. Despite the importance of habitat availability, P. vulgaris does not occupy all potentially suitable forest habitat, mostly owing to dispersal constraints. A positive effect of slope on plant presence also suggests some effect of habitat quality in determining establishment and occupancy of forest landscape. Conclusions: Within‐habitat dispersal constraints are as important as forest fragmentation in determining the landscape‐scale distribution of P. vulgaris. By assessing the relative role of the diverse fragmentation processes, and of the species' landscape perception, a continua landscape approach proves to be a valuable tool for predicting plant response to landscape change.  相似文献   

18.
Anthropogenic habitat change and assisted colonization are promoting range expansions of some widespread species with potential consequences for endemic fauna. The recent colonization of Cyprus by breeding Sardinian Warblers Sylvia melanocephala has raised concerns that it might be displacing the closely related and endemic Cyprus Warbler Sylvia melanothorax. Habitat associations of both species were examined using models of abundance within the 95% density kernel of the Sardinian Warbler’s range and also outside this range for Cyprus Warbler. Within the Sardinian Warbler’s range, the two species were associated with subtly different scrub habitats. Outside the Sardinian Warbler’s range, the Cyprus Warbler differed again in its habitat association, but this probably resulted from marked differences in habitat extent and availability in different parts of the island rather than from competitive displacement, as none of the habitat or land‐use elements differentially associated with Cyprus Warblers was positively associated with Sardinian Warbler occurrence. This suggests that the Sardinian Warbler has exploited a different niche, rather than displacing the endemic species, and has perhaps benefitted from changing land‐use patterns, particularly recent fallows and abandoned agriculture, in contrast to the stronger association of Cyprus Warblers with semi‐natural scrub.  相似文献   

19.
ABSTRACT Criteria for delisting Golden‐cheeked Warblers (Dendroica chrysoparia) include protection of sufficient breeding habitat to ensure the continued existence of 1000 to 3000 singing males in each of eight recovery regions for ≥10 consecutive years. Hence, accurate abundance estimation is an integral component in the recovery of this species. I conducted a field test to determine if the distance sampling method provided unbiased abundance estimates for Golden‐cheeked Warblers and develop recommendations to improve the accuracy of estimates by minimizing the effects of violating this method's assumptions. To determine if observers could satisfy the assumptions that birds are detected at the point with certainty and at their initial locations, I compared point‐transect sampling estimates from 2‐, 3‐, 4‐, and 5‐min time intervals to actual abundance determined by intensive territory monitoring. Point‐transect abundance estimates were 15%, 29%, 43%, and 59% greater than actual abundance (N= 156) for the 2‐, 3‐, 4‐, and 5‐min intervals, respectively. Point‐transect sampling produced unbiased estimates of Golden‐cheeked Warbler abundance when counts were limited to 2 min (N= 154–207). Abundance estimates derived from point‐transect sampling were likely greater than actual abundance because observers did not satisfy the assumption that birds were detected at their initial locations due to the frequent movements and large territory sizes of male Golden‐cheeked Warblers. To minimize the effect of movement on abundance estimates, I recommend limiting counts of singing males to 2‐min per point. Counts for other species in similar habitats with similar behavior and movement patterns also should be limited to 2 min when unbiased estimates are important and conducting field tests of the point‐transect distance sampling method is not possible.  相似文献   

20.
In the last century, bottomland hardwood (BLH) forests throughout the Lower Mississippi Alluvial Valley in the United States declined >80% and have been degraded because of habitat loss, fragmentation, and altered hydrology. To better understand how current conditions in BLH forest systems influence wildlife and to better manage land use and vegetation, we characterized winter (Dec–Mar) multi-scale habitat selection of 75 radio-marked swamp rabbits (Sylvilagus aquaticus) based on 850 locations in southern Illinois, USA, during 2010–2016. We investigated habitat selection by fitting resource selection functions with generalized linear mixed models based on Euclidean distances (km) to 8 cover types that described hydrogeomorphic conditions. At the second-order scale of selection (home range selection), swamp rabbits were closer to deciduous forest and low-elevation BLH and farther from agriculture, permanent water, shallow BLH, and woody wetland. At the third-order scale of selection (habitat selection within the home range), swamp rabbits selected areas closer to deciduous forest, low BLH, and shallow BLH, and farther from woody wetlands. For the swamp rabbit in Illinois, a BLH specialist at the northern extent of their range, habitat selection is limited to available terrestrial habitat that provides vegetation for food and hiding cover within linear and flood-prone BLH corridors surrounded by agricultural cover types that are largely unsuitable as habitat. Because hydrologic conditions are spatially and temporally dynamic, wildlife managers should focus on providing diverse habitat conditions across elevations that ensure the continuous availability of terrestrial habitat regardless of water level and flooding extent across the BLH landscape. Further reforestation efforts in BLH ecosystems should target current agricultural land on higher elevations adjacent to characteristically flood-prone forest remnants that escaped agricultural clearing due to frequent flooding. © 2021 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号